基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Wireless sensor networks are susceptible to failures of nodes and links due to various physical or computational reasons.Some physical reasons include a very high temperature,a heavy load over a node,and heavy rain.Computational reasons could be a third-party intrusive attack,communication conflicts,or congestion.Automated fault diagnosis has been a well-studied problem in the research community.In this paper,we present an automated fault diagnosis model that can diagnose multiple types of faults in the category of hard faults and soft faults.Our proposed model implements a feed-forward neural network trained with a hybrid metaheuristic algorithm that combines the principles of exploration and exploitation of the search space.The proposed methodology consists of different phases,such as a clustering phase,a fault detection and classification phase,and a decision and diagnosis phase.The implemented methodology can diagnose composite faults,such as hard permanent,soft permanent,intermittent,and transient faults for sensor nodes as well as for links.The proposed implementation can also classify different types of faulty behavior for both sensor nodes and links in the network.We present the obtained theoretical results and computational complexity of the implemented model for this particular study on automated fault diagnosis.The performance of the model is evaluated using simulations and experiments conducted using indoor and outdoor testbeds.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Multifault diagnosis in WSN using a hybrid metaheuristic trained neural network
来源期刊 数字通信与网络:英文版 学科 工学
关键词 Wireless sensor network FAULT diagnosis LINK FAILURES NEURAL networks META-HEURISTIC algorithm
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 86-100
页数 15页 分类号 TN9
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Wireless
sensor
network
FAULT
diagnosis
LINK
FAILURES
NEURAL
networks
META-HEURISTIC
algorithm
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数字通信与网络:英文版
季刊
2468-5925
50-1212/TN
重庆南岸区崇文路2号重庆邮电大学数字通信
78-45
出版文献量(篇)
11481
总下载数(次)
2
总被引数(次)
0
论文1v1指导