基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
With the eruption of big data,practical recommendation schemes are now very important in various fields,including e-commerce,social networks,and a number of web-based services.Nowadays,there exist many personalized movie recommendation schemes utilizing publicly available movie datasets (e.g.,MovieLens and Netflix),and returning improved performance metrics (e.g.,Root-Mean-Square Error (RMSE)).However,two fundamental issues faced by movie recommendation systems are still neglected:first,scalability,and second,practical usage feedback and verification based on real implementation.In particular,Collaborative Filtering (CF)is one of the major prevailing techniques for implementing recommendation systems.However,traditional CF schemes suffer from a time complexity problem,which makes them bad candidates for real-world recommendation systems.In this paper,we address these two issues.Firstly,a simple but high-efficient recommendation algorithm is proposed,which exploits users' profile attributes to partition them into several clusters.For each cluster,a virtual opinion leader is conceived to represent the whole cluster,such that the dimension of the original useritem matrix can be significantly reduced,then a Weighted Slope One-VU method is designed and applied to the virtual opinion leader-item matrix to obtain the recommendation results.Compared to traditional clustering-based CF recommendation schemes,our method can significantly reduce the time complexity,while achieving comparable recommendation performance.Furthermore,we have constructed a real personalized web-based movie recommendation system,MovieWatch,opened it to the public,collected user feedback on recommendations,and evaluated the feasibility and accuracy of our system based on this real-world data.
推荐文章
期刊_丙丁烷TDLAS测量系统的吸收峰自动检测
带间级联激光器
调谐半导体激光吸收光谱
雾剂检漏 中红外吸收峰 洛伦兹光谱线型
期刊_联合空间信息的改进低秩稀疏矩阵分解的高光谱异常目标检测
高光谱图像
异常目标检测 低秩稀疏矩阵分解 稀疏矩阵 残差矩阵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Personalized Real-Time Movie Recommendation System: Practical Prototype and Evaluation
来源期刊 清华大学学报自然科学版(英文版) 学科
关键词
年,卷(期) 2020,(2) 所属期刊栏目
研究方向 页码范围 180-191
页数 12页 分类号
字数 语种 英文
DOI 10.26599/TST.2018.9010118
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
清华大学学报自然科学版(英文版)
双月刊
1007-0214
11-3745/N
16开
北京市海淀区双清路学研大厦B座908
1996
eng
出版文献量(篇)
2269
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导