基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了在交通拥堵预测算法中充分考虑各类因素的影响以及挖掘交通流数据隐含的深层特征,该文提出基于长短期记忆(Long-short term memory,LSTM)模型的交通拥堵预测方法.该方法充分考虑交通流特征、天气、节假日等因素,首先利用去噪自编码模型提取输入数据的核心特征,再使用LSTM模型长时记忆历史数据,二者结合对城市交通拥堵程度进行有效预测,通过与已有的交通拥堵预测模型进行对比,结果表明,该方法具有较高的预测准确度和鲁棒性,准确度能达到92%以上.
推荐文章
基于长短期记忆网络的社区演化预测
动态网络
社区演化预测
长短期记忆网络
基于长短期记忆神经网络的风力发电 功率预测方法
深度学习
时序预测
风力发电
长短期记忆神经网络
基于长短期记忆神经网络的罗非鱼生长预测模型
罗非鱼
长短期记忆神经网络模型
生长模型
预测
基于深度学习的交通拥堵预测模型研究
交通拥堵
预测模型
深度学习
自编码网络
Softmax回归
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于长短期记忆模型的交通拥堵预测方法
来源期刊 南京理工大学学报(自然科学版) 学科 工学
关键词 交通拥堵预测 交通流量 长短期记忆模型 去噪自编码 深度学习
年,卷(期) 2020,(1) 所属期刊栏目
研究方向 页码范围 26-32,48
页数 8页 分类号 TP181
字数 5512字 语种 中文
DOI 10.14177/j.cnki.32-1397n.2020.44.01.005
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 戚湧 南京理工大学计算机科学与工程学院 134 1347 20.0 31.0
2 张伟斌 南京理工大学电子工程与光电技术学院 8 18 2.0 4.0
3 吕鲜 南京理工大学计算机科学与工程学院 2 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (18)
共引文献  (27)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(2)
  • 二级参考文献(1)
2005(2)
  • 参考文献(2)
  • 二级参考文献(0)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
交通拥堵预测
交通流量
长短期记忆模型
去噪自编码
深度学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京理工大学学报(自然科学版)
双月刊
1005-9830
32-1397/N
南京孝陵卫200号
chi
出版文献量(篇)
3510
总下载数(次)
7
总被引数(次)
33414
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导