基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Purpose:The aim of this research is to propose a modification of the ANOVA-SVM method that can increase accuracy when detecting benign and malignant breast cancer.Methodology:We proposed a new method ANOVA-BOOTSTRAP-SVM.It involves applying the analysis of variance(ANOVA)to support vector machines(SVM)but we use the bootstrap instead of cross validation as a train/test splitting procedure.We have tuned the kernel and the C parameter and tested our algorithm on a set of breast cancer datasets.Findings:By using the new method proposed,we succeeded in improving accuracy ranging from 4.5 percentage points to 8 percentage points depending on the dataset.Research limitations:The algorithm is sensitive to the type of kernel and value of the optimization parameter C.Practical implications:We believe that the ANOVA-BOOTSTRAP-SVM can be used not only to recognize the type of breast cancer but also for broader research in all types of cancer.Originality/value:Our findings are important as the algorithm can detect various types of cancer with higher accuracy compared to standard versions of the Support Vector Machines.
推荐文章
Determination of brominated diphenyl ethers in atmospheric particulate matter using selective pressu
Brominated diphenyl ethers
Atmospheric particulate matters
Selective pressurised liquid extraction
Gas chromatography-mass spectrometry
乳腺癌认知问卷(Breast-CAM)的汉化及信效度检验
乳腺癌
乳腺癌认知问卷
汉化
信度
效度
测评工具
翻译
专家咨询
Bootstrap方法在区间估计中的应用
Bootstrap
区间估计
总体均值
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Detection of Malignant and Benign Breast Cancer Using the ANOVA-BOOTSTRAP-SVM
来源期刊 数据与情报科学学报:英文版 学科 工学
关键词 Breast cancer detection ANOVA BOOTSTRAP Support vector machines
年,卷(期) 2020,(2) 所属期刊栏目
研究方向 页码范围 62-75
页数 14页 分类号 TP181
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Breast
cancer
detection
ANOVA
BOOTSTRAP
Support
vector
machines
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
数据与情报科学学报:英文版
季刊
2096-157X
10-1394/G2
北京市中关村北四环西路33号
82-563
出版文献量(篇)
445
总下载数(次)
1
总被引数(次)
0
论文1v1指导