基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The Sentinel-2 satellites are providing an unparalleled wealth of high-resolution remotely sensed information with a short revisit cycle, which is ideal for mapping burned areas both accurately and timely. However, the high detail and volume of information provided actually encumbers the automation of the mapping process, at least for the level of automation required to map systematically wildfires on a national level. This paper proposes a fully automated methodology for mapping burn scars using Sentinel-2 data. Information extracted from a pair of Sentinel-2 images, one pre-fire and one post-fire, is jointly used to automatically label a set of training patterns via two empirical rules. An initial pixel-based classification is derived using this training set by means of a Support Vector Machine (SVM) classifier. The latter is subsequently smoothed following a multiple spectral-spatial classification (MSSC) approach, which increases the mapping accuracy and thematic consistency of the final burned area delineation. The proposed methodology was tested on six recent wildfire events in Greece, selected to cover representative cases of the Greek ecosystems and to present challenges in burned area mapping. The lowest classification accuracy achieved was 92%, whereas Matthews correlation coefficient (MCC) was greater or equal to 0.85.
推荐文章
基于Sentinel-2影像的四川木里森林火灾监测
遥感
'哨兵二号'卫星
大气修正植被指数
燃烧指数
森林火灾
基于Sentinel-2和Landsat8 OLI数据融合的土地利用分类研究
Sentinel-2
Landsat8OLI
数据融合
遥感
随机森林
土地利用
基于Sentinel-2时序多特征的植被分类
森林经理学
Sentinel-2
归一化植被指数时间序列
多特征
植被类型
联合GF-6和Sentinel-2红边波段的森林地上生物量反演
森林地上生物量
落叶松
樟子松
遥感反演
GF-6
Sentinel-2
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Automated Burned Scar Mapping Using Sentinel-2 Imagery
来源期刊 地理信息系统(英文) 学科 数学
关键词 Operational Burned Area Mapping Multiple Spectral-Spatial Classification (MSSC) Sentinel-2 Automatic Training Patterns Classification Machine Learning
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 221-240
页数 20页 分类号 O17
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Operational
Burned
Area
Mapping
Multiple
Spectral-Spatial
Classification
(MSSC)
Sentinel-2
Automatic
Training
Patterns
Classification
Machine
Learning
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
地理信息系统(英文)
半月刊
2151-1950
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
143
总下载数(次)
0
总被引数(次)
0
论文1v1指导