基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Neural network is widely used in stock price forecasting,but it lacks interpretability because of its“black box”characteristics.In this paper,L1-orthogonal regularization method is used in the GRU model.A decision tree,GRU-DT,was conducted to represent the prediction process of a neural network,and some rule screening algorithms were proposed to find out significant rules in the prediction.In the empirical study,the data of 10 different industries in China’s CSI 300 were selected for stock price trend prediction,and extracted rules were compared and analyzed.And the method of technical index discretization was used to make rules easy for decision-making.Empirical results show that the AUC of the model is stable between 0.72 and 0.74,and the value of F1 and Accuracy are stable between 0.68 and 0.70,indicating that discretized technical indicators can predict the short-term trend of stock price effectively.And the fidelity of GRU-DT to the GRU model reaches 0.99.The prediction rules of different industries have some commonness and individuality.
推荐文章
Rapid estimation of soil heavy metal nickel content based on optimized screening of near-infrared sp
Heavy metal
Band extraction
Partial least squares regression
Extreme learning machine
Near infrared spectroscopy
Low net primary productivity of dominant tree species in a karst forest, southwestern China: first e
Biomass increment
Tree ring
Girth measurement
Karst evergreen and deciduous broadleaved forest
Allometric functions
基于ES-GRU-LSTM的风电场群功率预测
长短记忆神经网络
门控循环单元
风电场群
功率预测
指数平滑法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Stock Price Forecasting and Rule Extraction Based on L1-Orthogonal Regularized GRU Decision Tree Interpretation Model
来源期刊 国际计算机前沿大会会议论文集 学科 经济
关键词 Explainable artificial intelligence Neural network interpretability Rule extraction Stock forecasting L1-orthogonal regularization
年,卷(期) 2020,(2) 所属期刊栏目
研究方向 页码范围 309-328
页数 20页 分类号 F42
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Explainable
artificial
intelligence
Neural
network
interpretability
Rule
extraction
Stock
forecasting
L1-orthogonal
regularization
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导