基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
As recounted in this paper, the idea of groups is one that has evolved from some very intuitive concepts. We can do binary operations like adding or multiplying two elements and also binary operations like taking the square root of an element (in this case the result is not always in the set). In this paper, we aim to find the operations and actions of Lie groups on manifolds. These actions can be applied to the matrix group and Bi-invariant forms of Lie groups and to generalize the eigenvalues and eigenfunctions of differential operators on R<sup>n</sup>. A Lie group is a group as well as differentiable manifold, with the property that the group operations are compatible with the smooth structure on which group manipulations, product and inverse, are distinct. It plays an extremely important role in the theory of fiber bundles and also finds vast applications in physics. It represents the best-developed theory of continuous symmetry of mathematical objects and structures, which makes them indispensable tools for many parts of contemporary mathematics, as well as for modern theoretical physics. Here we did work flat out to represent the mathematical aspects of Lie groups on manifolds.
推荐文章
Lie color代数的全形
Lie color代数
全形
color导子代数
完备Lie color代数
奇异Hamilton系统的Lie对称性
奇异系统
Hamilton系统
Lie对称性
守恒量
Lie可导映射的特征
导子
李导子
李可导映射
可逆算子
Kepler方程的Noether-Lie对称性与守恒量
Kepler方程
Noether-Lie对称性
守恒量
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Operations and Actions of Lie Groups on Manifolds
来源期刊 美国计算数学期刊(英文) 学科 数学
关键词 Group (G) Abelian Group (g1g2 = g2g1) Subgroup (H Is a Subgroup of G) Co-Sets (gH) Lie Groups (G×G G(x y) x·y and G G g g-1) Smooth Mapping (σ:G × G G)
年,卷(期) 2020,(3) 所属期刊栏目
研究方向 页码范围 460-472
页数 13页 分类号 O17
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Group
(G)
Abelian
Group
(g1g2
=
g2g1)
Subgroup
(H
Is
a
Subgroup
of
G)
Co-Sets
(gH)
Lie
Groups
(G×G
G(x
y)
x·y
and
G
G
g
g-1)
Smooth
Mapping
(σ:G
×
G
G)
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
美国计算数学期刊(英文)
季刊
2161-1203
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
355
总下载数(次)
1
总被引数(次)
0
论文1v1指导