Saltation bombardment is a dominate dust emission mechanism in wind erosion. For loose surfaces, splash entrainment has been well understood theoretically. However, the mass loss predictions of cohesive soils are generally empirical in most wind erosion models. In this study, the soil particle detachment of a bare, smooth, dry, and uncrusted soil surface caused by saltation bombardment is modeled by means of classical mechanics. It is shown that detachment rate can be ana-lytically expressed in terms of the kinetic energy or mass flux of saltating grains and several common mechanical parame-ters of soils, including Poisson's ratio, Young's modulus, cohesion and friction angle. The novel expressions can describe dust emission rate from cohesive surfaces and are helpful to quantify the anti-erodibility of soil. It is proposed that the me-chanical properties of soils should be appropriately included in physically-based wind erosion models.