基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Aiming at the problems of low prediction accuracy and weak generalization ability of current reliability prediction models,this paper proposes a hybrid multi-layer heterogeneous particle swarm optimization algorithm(HMHPSO)that can simultaneously optimize the structure and parameters of the GRU neural network.It first introduced a multi-layer heteromass particle swarm optimization(MHPSO)algorithm,which sets the population topology as a hierarchical structure and introduces the concept of attractors,so as to improve the update formula of particle speed,and enhance the information interaction ability between particles,increase the diversity of the groups,thereby improving the optimization ability of the algorithm.Then the HMHPSO used the quantum particle swarm optimization(QPSO)algorithm to determine the structure of the GRU,that is,the number of hidden nodes.Experimental results show that the algorithm can generate GRU neural networks with high generalization performance and low architecture complexity,and has better prediction accuracy in software reliability prediction.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Hybrid Optimization-Based GRU Neural Network for Software Reliability Prediction
来源期刊 国际计算机前沿大会会议论文集 学科 工学
关键词 Software reliability PSO GRU Prediction accuracy Generalization performance
年,卷(期) 2020,(2) 所属期刊栏目
研究方向 页码范围 369-383
页数 15页 分类号 TP1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Software
reliability
PSO
GRU
Prediction
accuracy
Generalization
performance
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导