<span style="font-family:Verdana;">In this study, two Cu</span><span style="font-family:Verdana;"><span style="font-family:Verdana;"><span style="font-family:Verdana;">-</span></span></span><span><span><span style="font-family:;" "=""><span style="font-family:Verdana;">based catalysts with and without N doped carbon matrix, named N-Cu/CuO/C and Cu/CuO were synthesized via calcination of melamine-cupper acetate complex and cupper acetate at 500<span style="white-space:nowrap;">°</span>C under an inert atmosphere. The catalysts were characterized by X-ray powder diffraction (XRD), Field Emission Scanning Electron Microscope (FESEM), and </span><span><span style="font-family:Verdana;">CHNS </span><span><span style="font-family:Verdana;">elemental analyzer</span><i><span style="font-family:Verdana;">.</span></i></span></span><span style="font-family:Verdana;"> The catalytic activity of both catalysts was evaluated</span><span style="font-family:Verdana;"> through the NaBH</span><sub><span style="font-family:Verdana;">4</span></sub><span style="font-family:Verdana;"> associated reduction of commercial textile dye named reactive black 5 (RB5). The kinetics of the reduction of reactive black 5 was also described by the pseudo-first-order kinetic equation. For the studied reduction, N-Cu/CuO/C exhibited enhanced catalytic activity both in conversion and kinetics (97% conv. in 315 sec) compared to that of by Cu/CuO/C (25% conv. in 1500 sec). Besides, N-Cu/CuO/C also demonstrated good reusability up to four consecutive cycles.</span></span></span></span>