<span style="font-family:Verdana;">It is numerically studied the influence of the angular velocity, the molten metal viscosity, and the mold wall roughness on the molten metal distribution in the mold of a horizontal centrifugal casting process. The undesirable raining phenomenon sometimes arises in horizontal centrifugal casting. It occurs when the molten metal rains or falls from the top of the mold to the bottom while the mold is rotating. Using Computational Fluid Dynamics simulations, the conditions for the emergence of the raining phenomenon were explored in this work. For the system considered, angular velocities less than 77 rad/s cause the emergence of the raining phenomenon and accumulation of the molten metal in the lower part of the mold, whereas angular velocities greater than 77 rad/s produce a constant thickness of the molten metal and prevent raining.</span>