作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Wholesale and retail markets for electricity and power require consumers to forecast electricity consumption at different time intervals. The study aims to</span><span style="font-family:Verdana;"> increase economic efficiency of the enterprise through the introduction of algorithm for forecasting electric energy consumption unchanged in technological process. Qualitative forecast allows you to essentially reduce costs of electrical </span><span style="font-family:Verdana;">energy, because power cannot be stockpiled. Therefore, when buying excess electrical power, costs can increase either by selling it on the balancing energy </span><span style="font-family:Verdana;">market or by maintaining reserve capacity. If the purchased power is insufficient, the costs increase is due to the purchase of additional capacity. This paper illustrates three methods of forecasting electric energy consumption: autoregressive integrated moving average method, artificial neural networks and classification and regression trees. Actual data from consuming of electrical energy was </span><span style="font-family:Verdana;">used to make day, week and month ahead prediction. The prediction effect of</span><span> </span><span style="font-family:Verdana;">prediction model was proved in Statistica simulation environment. Analysis of estimation of the economic efficiency of prediction methods demonstrated that the use of the artificial neural networks method for short-term forecast </span><span style="font-family:Verdana;">allowed reducing the cost of electricity more efficiently. However, for mid-</span></span><span style="font-family:""> </span><span style="font-family:Verdana;">range predictions, the classification and regression tree was the most efficient method for a Jerky Enterprise. The results indicate that calculation error reduction allows decreases expenses for the purchase of electric energy.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Predicting Electric Energy Consumption for a Jerky Enterprise
来源期刊 能源与动力工程(英文) 学科 工学
关键词 Autoregressive Integrated Moving Average Method Artificial Neural Networks Classification and Regression Trees Electricity Consumption Ener-gy Forecasting
年,卷(期) 2020,(6) 所属期刊栏目
研究方向 页码范围 396-406
页数 11页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Autoregressive
Integrated
Moving
Average
Method
Artificial
Neural
Networks
Classification
and
Regression
Trees
Electricity
Consumption
Ener-gy
Forecasting
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
能源与动力工程(英文)
月刊
1949-243X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
94
总下载数(次)
0
总被引数(次)
0
论文1v1指导