基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
As a result of a huge volume of implicit feedback such as browsing and clicks,many researchers are involving in designing recommender systems(RSs)based on implicit feedback.Though implicit feedback is too challenging,it is highly applicable to use in building recommendation systems.Conventional collaborative filtering techniques such as matrix decomposition,which consider user preferences as a linear combination of user and item latent features,have limited learning capacities,hence suffer from a cold start and data sparsity problems.To tackle these problems,the research direction towards considering the integration of conventional collaborative filtering with deep neural networks to maps user and item features.Conversely,the scalability and the sparsity of the data affect the performance of the methods and limit the worthiness of the results of the recommendations.Therefore,the authors proposed a multimodel deep learning(MMDL)approach by integrating user and item functions to construct a hybrid RS and significant improvement.The MMDL approach combines deep autoencoder with a one-dimensional convolution neural network model that learns user and item features to predict user preferences.From detail experimentation on two real-world datasets,the proposed work exhibits substantial performance when compared to the existing methods.
推荐文章
Agent及Multi-Agent System的理论和应用
多Agent系统
Agent
人工智能
A hydrochemical approach to estimate mountain front recharge in an aquifer system in Tamilnadu, Indi
Mountain-front recharge
Geostatistical tools
Hydrogeochemical facies
Ionic ratio
Anthropogenic processes
Using electrogeochemical approach to explore buried gold deposits in an alpine meadow-covered area
Electrogeochemistry
Buried mineral deposit
Ideal anomaly model
Alpine-meadow covered
Ihunze
一种适用的Multi-Agent System协同框架及其应用
MAS(Multi-Agent System)
协同机制
GPGP
TAEMS
制造执行系统
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Multi-model deep learning approach for collaborative filtering recommendation system
来源期刊 智能技术学报 学科 工学
关键词 FILTERING APPROACH NEURAL
年,卷(期) znjsxb_2020,(4) 所属期刊栏目
研究方向 页码范围 268-275
页数 8页 分类号 TN9
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
FILTERING
APPROACH
NEURAL
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
智能技术学报
季刊
2468-2322
重庆市巴南区红光大道69号
出版文献量(篇)
142
总下载数(次)
4
论文1v1指导