基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
指静脉生物识别技术已被广泛研究用于个人认证.针对质量差的图像中的虚假和缺失功能可能会降低系统性能的问题,提出了一种多标签深度神经网络(CSA-DNN).在生物特征质量评估的主要目标(即验证错误最小化)的驱动下,假设在验证系统中错误地拒绝低质量图像,并且对低质量图像进行图像配准后转换成高质量图像进行身份识别.基于该假设,低质量图像和高质量图像被人工标记.在结构上引入通道空间注意力(CSA)模块增加特征学习能力,并将图像分成各种block,以增强网络鲁棒性.随后,估计来自测试图像的每个block的质量,再根据多标签预测的结构,采用B样条配准与融合滤波的方式将低质量图像变换为高质量图像,从而提高系统识别率与利用率,最后使用该算法在两个大型公共数据集上面测试,实验结果表明,采用该算法达到了最高准确率为92.5%,静脉身份验证最高精度为93.7%,图像最高利用率为98.5%的高效评估性能.
推荐文章
基于多特征阈值融合的手指静脉识别算法
指静脉识别
曲率
细线特征
阈值融合算法
基于多 GPU 并行框架的 DNN 语音识别研究
深度神经网络
语音识别
图形处理器
并行框架
基于标签相关性的类属属性多标签分类算法
标签相关性
类属属性
多标签学习
基于手指静脉特征图像的加密研究
手指静脉特征图像
加密
移动互联
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Patch的多标签CSA-DNN手指静脉质量评估
来源期刊 天津理工大学学报 学科 工学
关键词 质量评估 深度神经网络 生物识别技术 CSA 手指静脉 多标签分类
年,卷(期) 2020,(4) 所属期刊栏目
研究方向 页码范围 33-38
页数 6页 分类号 TP391.41
字数 语种 中文
DOI 10.3969/j.issn.1673-095X.2020.04.007
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (43)
共引文献  (21)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(5)
  • 参考文献(2)
  • 二级参考文献(3)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(8)
  • 参考文献(2)
  • 二级参考文献(6)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(6)
  • 参考文献(0)
  • 二级参考文献(6)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(4)
  • 参考文献(2)
  • 二级参考文献(2)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
质量评估
深度神经网络
生物识别技术
CSA
手指静脉
多标签分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
天津理工大学学报
双月刊
1673-095X
12-1374/N
大16开
天津市西青区宾水西道391号
1984
chi
出版文献量(篇)
2405
总下载数(次)
4
总被引数(次)
13943
论文1v1指导