基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
特征选择是高维小样本癌症基因数据分析的首要和关键步骤,但是现有特征选择算法存在特征子集依赖于训练样本且随训练样本不同而变化的问题.为了解决特征选择过程的特征子集不稳定问题,提出一种基于核极限学习机的集成特征选择方法,利用5-折交叉验证划分原始数据,对各训练集继续采用5-折交叉验证进行划分并进行特征选择,以所得5个特征子集之并集作为该训练集的特征子集,构造核极限学习机评价该特征子集的分类性能,以原始数据集5-折交叉验证所得特征子集的平均Jaccard系数评价特征选择算法所选特征子集的稳定性.5个基因数据集的实验测试以及与经典特征选择算法SVM-RFE、LLE Score、ARCO、DRJMIM、Random Forest和mRMR的实验比较表明,本文算法不仅能选择到稳定的特征子集,且所选特征子集具有很好的泛化能力.
推荐文章
小波核极限学习机分类器
极限学习机
核学习机
小波分析
小波核函数
分类器
空谱超像素核极限学习机的高光谱分类算法
空间结构信息
超像素
同谱异类
极限学习机
集成优化核极限学习机的冠心病无创性诊断
冠心病诊断
核极限学习机
集成学习
特征提取
基于粒子群优化算法的最优极限学习机
粒子群算法
极限学习机
隐层节点
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 F-score结合核极限学习机的集成特征选择算法
来源期刊 陕西师范大学学报(自然科学版) 学科 工学
关键词 F-score 特征选择 极限学习机 集成特征选择
年,卷(期) 2020,(2) 所属期刊栏目 人工智能专题
研究方向 页码范围 1-8
页数 8页 分类号 TP181
字数 4193字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 谢娟英 陕西师范大学计算机科学学院 46 873 15.0 28.0
2 郑清泉 陕西师范大学计算机科学学院 2 0 0.0 0.0
3 吉新媛 陕西师范大学计算机科学学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (98)
共引文献  (95)
参考文献  (23)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1912(1)
  • 参考文献(1)
  • 二级参考文献(0)
1963(1)
  • 参考文献(0)
  • 二级参考文献(1)
1967(1)
  • 参考文献(0)
  • 二级参考文献(1)
1971(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(6)
  • 参考文献(2)
  • 二级参考文献(4)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(5)
  • 参考文献(2)
  • 二级参考文献(3)
2002(14)
  • 参考文献(3)
  • 二级参考文献(11)
2003(5)
  • 参考文献(0)
  • 二级参考文献(5)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(9)
  • 参考文献(1)
  • 二级参考文献(8)
2006(7)
  • 参考文献(0)
  • 二级参考文献(7)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(8)
  • 参考文献(0)
  • 二级参考文献(8)
2010(5)
  • 参考文献(2)
  • 二级参考文献(3)
2011(6)
  • 参考文献(1)
  • 二级参考文献(5)
2012(6)
  • 参考文献(1)
  • 二级参考文献(5)
2013(6)
  • 参考文献(1)
  • 二级参考文献(5)
2014(8)
  • 参考文献(3)
  • 二级参考文献(5)
2015(5)
  • 参考文献(1)
  • 二级参考文献(4)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(4)
  • 参考文献(1)
  • 二级参考文献(3)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
F-score
特征选择
极限学习机
集成特征选择
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
陕西师范大学学报(自然科学版)
双月刊
1672-4291
61-1071/N
大16开
陕西省西安市长安南路
52-109
1960
chi
出版文献量(篇)
3025
总下载数(次)
7
总被引数(次)
18459
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导