基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
停电电量损失预测可为电网调度及规划提供参考,有利于为用户提供可靠供电服务.针对当前配变停电过程中的电量损失问题,先基于模糊C均值聚类算法实现对配变负荷曲线的分类处理及精细化分析,挖掘配变负荷数据规律;在此基础上,运用皮尔逊相关系数算法提取选择输入特征,构建基于门控循环单元神经网络的预测模型,从而得到停电时间负荷值,进而分析预测负荷曲线得到损失电量;最后,基于停电管理工作分析,实现基于粒子群优化的台区用电行为停电优化问题求解.算例测试验证了所提方法的正确性和有效性.
推荐文章
基于多模态深度学习的不停电作业风险评估
不停电作业
风险评估
多模态
深度学习
基于深度学习的短时交通流预测
交通流预测
深度学习
短时交通流
支持向量回归
基于深度学习的故障预测技术研究
深度学习
故障预测
故障演化
软件静态故障预测
基于变步长灰色预测的配浆浓度模糊控制研究
配浆浓度
变步长灰色预测
模糊控制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的配变停电电量损失预测
来源期刊 水电能源科学 学科 工学
关键词 深度学习 循环神经网络 配变停电 电量损失 预测
年,卷(期) 2020,(4) 所属期刊栏目 电气工程
研究方向 页码范围 176-180
页数 5页 分类号 TM715
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (112)
共引文献  (142)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1963(1)
  • 参考文献(0)
  • 二级参考文献(1)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(8)
  • 参考文献(0)
  • 二级参考文献(8)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(8)
  • 参考文献(0)
  • 二级参考文献(8)
2010(7)
  • 参考文献(0)
  • 二级参考文献(7)
2011(14)
  • 参考文献(0)
  • 二级参考文献(14)
2012(14)
  • 参考文献(0)
  • 二级参考文献(14)
2013(11)
  • 参考文献(0)
  • 二级参考文献(11)
2014(12)
  • 参考文献(1)
  • 二级参考文献(11)
2015(7)
  • 参考文献(1)
  • 二级参考文献(6)
2016(7)
  • 参考文献(0)
  • 二级参考文献(7)
2017(7)
  • 参考文献(3)
  • 二级参考文献(4)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
循环神经网络
配变停电
电量损失
预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
水电能源科学
月刊
1000-7709
42-1231/TK
大16开
武汉市洪山区珞喻路1037号华中科技大学内
38-111
1983
chi
出版文献量(篇)
9307
总下载数(次)
26
论文1v1指导