基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
隐语义模型(LFM)能够有效地提取用户和对象的特征.本文基于LFM所提取的有效特征,提出一种基于融合特征的长短期记忆网络(LSTM)评分预测模型(F-LFM-LSTM).首先,运用LFM模型提取用户和对象的有效特征.然后,融合用户的职业、年龄、性别标签和对象类别标签等辅助信息.最后,运用LSTM网络训练得到预测评分.通过在Mov-ieLens100k数据集上实验表明,相比于几种得到较为广泛研究的算法,F-LFM-LSTM模型能够取得更好的评分预测效果.
推荐文章
基于CNN-LSTM的QAR数据特征提取与预测
深度学习
融合卷积神经网络
长短时记忆网络
特征提取
时间序列预测
基于LSTM变权组合模型的股价预测
GRA
PCA
LSTM
误差倒数变权组合预测法
基于LSTM模型的短期负荷预测
短期负荷预测
LSTM神经网络
工业用户
深度学习
基于CEEMDAN-PE-LSTM的混凝土坝变形预测
变形预测
经验模态
排列熵
时间序列
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于融合特征的LSTM评分预测
来源期刊 计算机与现代化 学科 工学
关键词 隐语义模型 F-LFM-LSTM模型 评分预测
年,卷(期) 2020,(3) 所属期刊栏目 算法设计与分析
研究方向 页码范围 49-53,59
页数 6页 分类号 TP18
字数 4250字 语种 中文
DOI 10.3969/j.issn.1006-2475.2020.03.010
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈光 南昌航空大学信息工程学院 2 1 1.0 1.0
2 邱天 南昌航空大学信息工程学院 4 1 1.0 1.0
3 张尚田 南昌航空大学信息工程学院 3 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (102)
共引文献  (22)
参考文献  (14)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1953(1)
  • 参考文献(0)
  • 二级参考文献(1)
1965(2)
  • 参考文献(0)
  • 二级参考文献(2)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(11)
  • 参考文献(0)
  • 二级参考文献(11)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(6)
  • 参考文献(0)
  • 二级参考文献(6)
2013(7)
  • 参考文献(0)
  • 二级参考文献(7)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(9)
  • 参考文献(0)
  • 二级参考文献(9)
2016(9)
  • 参考文献(2)
  • 二级参考文献(7)
2017(13)
  • 参考文献(4)
  • 二级参考文献(9)
2018(13)
  • 参考文献(4)
  • 二级参考文献(9)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
隐语义模型
F-LFM-LSTM模型
评分预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与现代化
月刊
1006-2475
36-1137/TP
大16开
南昌市井冈山大道1416号
44-121
1985
chi
出版文献量(篇)
9036
总下载数(次)
25
总被引数(次)
56782
论文1v1指导