基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高推荐系统为用户推荐新产品的准确率,挖掘出每位顾客的隐藏喜好以及每个产品的性能十分关键.基于用户反馈技术经常被用于发现产品的潜在特性和用户维度,本文提出了一种将用户评分中的潜在因子和评论中的潜在主题相结合的推荐模型.该模型通过对评论文本进行分析从而实现更精确的评分预测,特别适用于对新产品和新用户的评分预测.通过在公开数据集上的验证实验,证明了该模型较传统推荐系统在性能上有显著提升.
推荐文章
结合用户聚类和评分偏好的推荐算法
协同过滤
降维
聚类
用户偏好
推荐系统
融合用户和商品评论的双通道CNN推荐算法
CNN推荐算法
推荐系统
特征提取
文本矢量化
抽象特征映射
评分预测
基于评论与评分的协同过滤算法
协同过滤
数据稀疏性
评论分析
主题模型
用户偏好
基于用户评论评分与信任度的协同过滤算法
协同过滤
信任度
主题模型
用户偏好
评论反馈
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 结合用户评论与评分信息的推荐算法
来源期刊 陕西师范大学学报(自然科学版) 学科 工学
关键词 评分 信任度 评论 预测 LDA 推荐
年,卷(期) 2020,(2) 所属期刊栏目 人工智能专题
研究方向 页码范围 84-91
页数 8页 分类号 TP391
字数 7066字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李慧 江苏海洋大学计算机工程学院 6 3 1.0 1.0
5 王成强 江苏海洋大学商学院 3 0 0.0 0.0
6 张舒 江苏海洋大学商学院 2 0 0.0 0.0
7 施珺 江苏海洋大学计算机工程学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (70)
共引文献  (39)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1957(1)
  • 参考文献(0)
  • 二级参考文献(1)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(7)
  • 参考文献(0)
  • 二级参考文献(7)
2013(10)
  • 参考文献(1)
  • 二级参考文献(9)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(10)
  • 参考文献(3)
  • 二级参考文献(7)
2017(6)
  • 参考文献(1)
  • 二级参考文献(5)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
评分
信任度
评论
预测
LDA
推荐
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
陕西师范大学学报(自然科学版)
双月刊
1672-4291
61-1071/N
大16开
陕西省西安市长安南路
52-109
1960
chi
出版文献量(篇)
3025
总下载数(次)
7
总被引数(次)
18459
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导