原文服务方: 计算机应用研究       
摘要:
评论数据存在稀疏问题,不足以支撑学习出更全面的用户偏好.针对评论稀疏问题进行了研究,并提出一种应对评论稀疏的即插即用辅助网络(NRSN),其能与不同的模型进行结合,以添加辅助信息的方式,来重新调整当前模型输出的用户偏好向量.首先根据目标用户,使用aspect-attention机制从其近邻用户评论中学习出近邻用户的偏好,然后采用co-attention机制将近邻用户和目标用户进行契合度匹配,调整出目标用户新的偏好向量.在三组公开数据集下的实验结果表明,NRSN不仅能提高所结合模型的推荐性能,且能有效应对"冷启动"场景下的评论稀疏问题.
推荐文章
融合用户和商品评论的双通道CNN推荐算法
CNN推荐算法
推荐系统
特征提取
文本矢量化
抽象特征映射
评分预测
基于熵优化近邻选择的协同过滤推荐算法
协同过滤
近邻选择
相似性
巴氏系数
推荐权重
基于利用可靠用户网络补充标签的服务推荐
社交关系
可靠性网络
协同过滤
服务推荐
基于评论的隐式社交关系在推荐系统中的应用
推荐系统
矩阵分解
评论数据
隐式社交关系
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于近邻用户评论的推荐辅助网络
来源期刊 计算机应用研究 学科
关键词 推荐系统 协同过滤 评论文本
年,卷(期) 2020,(10) 所属期刊栏目 算法研究探讨
研究方向 页码范围 2956-2960
页数 5页 分类号 TP391
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2019.05.0191
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 冯兴杰 61 398 10.0 18.0
2 曾云泽 7 5 2.0 2.0
3 崔桂颖 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (80)
共引文献  (28)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(7)
  • 参考文献(0)
  • 二级参考文献(7)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(13)
  • 参考文献(0)
  • 二级参考文献(13)
2015(13)
  • 参考文献(0)
  • 二级参考文献(13)
2016(9)
  • 参考文献(0)
  • 二级参考文献(9)
2017(8)
  • 参考文献(1)
  • 二级参考文献(7)
2018(5)
  • 参考文献(2)
  • 二级参考文献(3)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
推荐系统
协同过滤
评论文本
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
论文1v1指导