基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了解决视频图像中目标检测准确率低、速度慢等问题,本文提出了一种基于YOLOV3改进的目标检测方法.通过引入GIOU Loss,可解决原IOU无法直接优化的非重叠部分问题,在借鉴了密集连接网络的思想之后,将YOLOV3中的3个残差块更换为3个密集块,并结合Max Pooling加强密集连接块之间的特征传递,重新替换IOU和原网络的连接结构,检测设计出新的网络结构后,减少了参数量,增强了特征的复用与融合,最终实现了优于原方法的效果.实验结果表明:改进的GDT-YOLOV3算法与原有的算法相比,无论是在简单还是复杂交通场景中都有较优秀的检测效果,本文所提出的算法平均检出准确率高达92.77%,速度达到25.3 f/s,基本满足了实时性.此外在检测精度上,改进的GDT-YOLOV3算法要优于SSD512、YOLOV2与YOLOV3算法.
推荐文章
改进 YoloV5 的行人检测算法
目标检测
行人遮挡检测
随机擦除
Res2Net
注意力机制
Confluence
一种基于改进YOLOv3的密集人群检测算法
密集人群
YOLOv3
特征提取网络
K-means++
基于暗通道和改进YOLOv3的雾天车辆检测算法
雾天车辆检测
暗通道去雾算法
YOLOv3
K-means
先验框
注意力机制
基于YOLOv7的交通目标检测算法研究
交通目标检测
YOLOv7网络
注意力机制
浅层网络检测层
SIoU损失函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进的GDT-YOLOV3目标检测算法
来源期刊 液晶与显示 学科 工学
关键词 目标检测 卷积神经网络 YOLOV3 密集连接网络 K-means
年,卷(期) 2020,(8) 所属期刊栏目 图像处理
研究方向 页码范围 852-860
页数 9页 分类号 TP394.1|TH691.9
字数 5328字 语种 中文
DOI 10.37188/YJYXS20203508.0852
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴戈 长春理工大学电子信息工程学院 10 123 2.0 10.0
2 朴燕 长春理工大学电子信息工程学院 44 138 6.0 11.0
3 唐悦 长春理工大学电子信息工程学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (126)
共引文献  (108)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1979(2)
  • 参考文献(0)
  • 二级参考文献(2)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(4)
  • 参考文献(0)
  • 二级参考文献(4)
1998(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(7)
  • 参考文献(0)
  • 二级参考文献(7)
2011(7)
  • 参考文献(0)
  • 二级参考文献(7)
2012(9)
  • 参考文献(0)
  • 二级参考文献(9)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(9)
  • 参考文献(1)
  • 二级参考文献(8)
2015(14)
  • 参考文献(0)
  • 二级参考文献(14)
2016(7)
  • 参考文献(0)
  • 二级参考文献(7)
2017(16)
  • 参考文献(2)
  • 二级参考文献(14)
2018(15)
  • 参考文献(2)
  • 二级参考文献(13)
2019(8)
  • 参考文献(5)
  • 二级参考文献(3)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
目标检测
卷积神经网络
YOLOV3
密集连接网络
K-means
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
液晶与显示
月刊
1007-2780
22-1259/O4
大16开
长春市东南湖大路3888号
12-203
1986
chi
出版文献量(篇)
3141
总下载数(次)
7
总被引数(次)
21631
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导