基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
不平衡分类在现实生活中有着广泛应用,提高不平衡数据的分类精度一直是相关领域中的热门课题.针对已有欠采样方法容易保留多数类噪声样本的问题,提出一种基于聚类融合欠采样的改进欠采样方法.结合聚类融合与孤立森林(Isolation Forest,iForest)方法,筛选、删除异常指数高的多数类噪声样本,有效提高模型中的样本质量,增强欠采样算法的抗噪声能力.在7个UCI和KEEL不平衡数据集上的实验结果表明,该算法在处理不平衡分类问题时,AUC值和F1值均有一定程度的提升.将算法应用在蛋白质定位预测,提升了预测效果.
推荐文章
剪枝与欠采样相结合的不平衡数据分类方法
机器学习
不平衡数据集
剪枝技术
欠采样技术
交叉验证
合并分类器增强算法
不平衡数据集的分类方法研究
机器学习
不平衡数据
数据分类
面向不平衡分类的IDP-SMOTE重采样算法
不平衡数据
分类
重采样
密度峰值聚类
基于AdaBoost的类不平衡学习算法
机器学习
类不平衡学习
集成学习
SMOTE
数据清理技术
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于聚类融合欠采样的不平衡分类方法
来源期刊 计算机应用与软件 学科 工学
关键词 不平衡分类 聚类融合 欠采样 噪声
年,卷(期) 2020,(1) 所属期刊栏目 算法
研究方向 页码范围 292-297
页数 6页 分类号 TP311
字数 5460字 语种 中文
DOI 10.3969/j.issn.1000-386x.2020.01.047
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 叶枫 浙江工业大学管理学院 50 319 10.0 15.0
2 江永省 浙江工业大学管理学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (44)
共引文献  (18)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(1)
  • 二级参考文献(2)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(5)
  • 参考文献(0)
  • 二级参考文献(5)
2014(3)
  • 参考文献(2)
  • 二级参考文献(1)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(5)
  • 参考文献(2)
  • 二级参考文献(3)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
不平衡分类
聚类融合
欠采样
噪声
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用与软件
月刊
1000-386X
31-1260/TP
大16开
上海市愚园路546号
4-379
1984
chi
出版文献量(篇)
16532
总下载数(次)
47
总被引数(次)
101489
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导