原文服务方: 计算机应用研究       
摘要:
基于函数逼近的方法存在少数类样本不足时分类效果不佳的问题,针对此问题提出了不平衡贝叶斯学习分类模型.模型引入类间隔似然函数,用于降低后验分布在参数空间上存在的偏态性,以采样到对各类样本分类精确的参数点.在UCI、KEEL上的公开不平衡数据集中的实验结果验证了所提方法的有效性;基于MINIST数据集构建了两个不平衡数据集,在这两个数据集中几何均值分别达到92.4%和81.6%.
推荐文章
融合主动学习的改进贝叶斯半监督分类算法研究
半监督分类
主动学习策略
概率模型
贝叶斯分类
KL距离
集成学习算法在不平衡分类中的应用研究
机器学习
类不平衡
集成学习
评测标准
多贝叶斯网络分类器集成模型研究
贝叶斯网络
分类器集成模型
结构学习
约束信息熵
免疫遗传算法
不平衡数据集的分类方法研究
机器学习
不平衡数据
数据分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进的不平衡贝叶斯学习分类模型研究
来源期刊 计算机应用研究 学科
关键词 不平衡分类 数据挖掘 类间隔似然函数 贝叶斯学习
年,卷(期) 2020,(12) 所属期刊栏目 算法研究探讨
研究方向 页码范围 3561-3564
页数 4页 分类号 TP391
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2019.08.0520
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 段大高 31 326 9.0 17.0
2 韩忠明 51 631 14.0 23.0
3 张珣 14 74 4.0 8.0
4 杨伟杰 13 200 7.0 13.0
5 刘聃 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (31)
共引文献  (20)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(3)
  • 参考文献(0)
  • 二级参考文献(3)
2016(7)
  • 参考文献(4)
  • 二级参考文献(3)
2017(3)
  • 参考文献(2)
  • 二级参考文献(1)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(4)
  • 参考文献(4)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
不平衡分类
数据挖掘
类间隔似然函数
贝叶斯学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导