基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统卷积神经网络采用通用卷积核提取目标特征造成更高的时间和空间开销的问题,提出一种适应目标几何形状的卷积核结构以替代通用卷积核,可使单个卷积核充分提取目标特征,简化目标提取过程,减少冗余计算.实验以网上收集的舰船可见光图像数据集为研究对象,实验结果表明:本方法在舰船目标识别任务中达到了99.7%的分类准确率,与目前通用的分类模型进行对比要高出约1%,训练速度是通用模型中收敛速度最快的模型的3倍.
推荐文章
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
基于卷积神经网络的军事图像分类
军事图像分类
深度学习
卷积神经网络
主成分分析白化
随机池化
改进卷积神经网络在分类与推荐中的实例应用
服装分类与推荐
卷积神经网络
图片增广
感知哈希算法
基于卷积神经网络的植物图像分类方法研究
卷积神经网络
图像特征
图像分类
全卷积网络
植物图像
数据集
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于目标形状卷积神经网络在舰船分类中的应用
来源期刊 武汉工程大学学报 学科 工学
关键词 卷积神经网络 目标几何形状 特征提取 目标识别 舰船
年,卷(期) 2020,(2) 所属期刊栏目 机电与信息工程
研究方向 页码范围 213-217
页数 5页 分类号 TP391.4
字数 3653字 语种 中文
DOI 10.19843/j.cnki.CN42-1779/TQ.201911022
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵彤洲 武汉工程大学计算机科学与工程学院 35 113 6.0 9.0
2 江满星 武汉工程大学计算机科学与工程学院 1 0 0.0 0.0
3 吴泽俊 武汉工程大学计算机科学与工程学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (64)
共引文献  (53)
参考文献  (16)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(2)
  • 二级参考文献(0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(9)
  • 参考文献(0)
  • 二级参考文献(9)
2015(5)
  • 参考文献(1)
  • 二级参考文献(4)
2016(16)
  • 参考文献(2)
  • 二级参考文献(14)
2017(7)
  • 参考文献(3)
  • 二级参考文献(4)
2018(9)
  • 参考文献(2)
  • 二级参考文献(7)
2019(7)
  • 参考文献(6)
  • 二级参考文献(1)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
目标几何形状
特征提取
目标识别
舰船
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
武汉工程大学学报
双月刊
1674-2869
42-1779/TQ
大16开
武汉市江夏区流芳大道特1号,武汉工程大学流芳校区,西北区1号楼504学报编辑部收
1979
chi
出版文献量(篇)
3719
总下载数(次)
13
总被引数(次)
21485
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导