基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
电网设备缺陷部位识别是设备故障分析的关键环节.该文提出一种基于预训练语言模型双向Transformers偏码表示(Bidirectional encoder representation from transformers,BERT)的电网设备缺陷文本分类方法.基于BERT预训练语言模型对电网设备缺陷部位文本进行预训练生成具有上下文特征的词嵌入(Word embedding)向量作为模型输入,然后,利用双向长短时记忆(Bi-directional long short-term memory)网络对输入的电网设备缺陷文本向量进行双向编码提取表征缺陷文本的语义表征,并通过注意力机制增强电网设备缺陷文本中与缺陷部位相关的领域词汇的语义特征权重,进而得到有助于电网设备缺陷部位分类的语义特征向量.通过模型的归一化层实现电网设备缺陷部位文本分类.在主变压器、SF6真空断路器这两种设备缺陷文本数据集上实验结果表明,提出的方法比基于BiLSTM-Attention模型的F1值分别提升了2.77%和2.95%.
推荐文章
基于BERT-AWC的文本分类方法研究
文本分类
注意力机制
卷积神经网络
混合注意力机制
基于发现特征子空间模型的文本分类算法
发现特征子空间
文本分类
模式
基于语义依存分析的图网络文本分类模型
语义依存分析
词嵌入
语义图网络块
文本分类
CNN-ELM混合短文本分类模型
文本分类
卷积神经网络
极速学习机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于BERT预训练语言模型的电网设备缺陷文本分类
来源期刊 南京理工大学学报(自然科学版) 学科 工学
关键词 电网设备 预训练语言模型 双向长短时记忆网络 双向Transformers偏码表示 注意力机制 缺陷部位 文本分类
年,卷(期) 2020,(4) 所属期刊栏目
研究方向 页码范围 446-453
页数 8页 分类号 TP391.1
字数 语种 中文
DOI 10.14177/j.cnki.32-1397n.2020.44.04.009
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (111)
共引文献  (140)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1969(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(3)
  • 参考文献(0)
  • 二级参考文献(3)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(8)
  • 参考文献(0)
  • 二级参考文献(8)
2014(10)
  • 参考文献(0)
  • 二级参考文献(10)
2015(17)
  • 参考文献(1)
  • 二级参考文献(16)
2016(16)
  • 参考文献(0)
  • 二级参考文献(16)
2017(15)
  • 参考文献(0)
  • 二级参考文献(15)
2018(12)
  • 参考文献(7)
  • 二级参考文献(5)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
电网设备
预训练语言模型
双向长短时记忆网络
双向Transformers偏码表示
注意力机制
缺陷部位
文本分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
南京理工大学学报(自然科学版)
双月刊
1005-9830
32-1397/N
南京孝陵卫200号
chi
出版文献量(篇)
3510
总下载数(次)
7
总被引数(次)
33414
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导