原文服务方: 计算机应用研究       
摘要:
针对目前已有的文本分类方法未考虑文本内部词之间的语义依存信息而需要大量训练数据的问题,提出基于语义依存分析的图网络文本分类模型TextSGN.首先对文本进行语义依存分析,对语义依存关系图中的节点(单个词)和边(依存关系)进行词嵌入和one-hot编码;在此基础上,为了对语义依存关系进行快速挖掘,提出一个SGN网络块,通过从结构层面定义信息传递的方式来对图中的节点和边进行更新,从而快速地挖掘语义依存信息,使得网络更快地收敛.在多组公开数据集上训练分类模型并进行分类测试,结果表明,TextSGN模型在短文本分类上的准确率达到95.2%,较次优分类法效果提升了3.6%.
推荐文章
基于事件卷积特征的新闻文本分类
文本分类
事件
卷积神经网络
自然语言处理
一种基于语义标注特征的金融文本分类方法
文本分类
金融文本
语义标注
词汇—语义模式
有限状态机
基于语义分析在计算机技术文本分类中的应用研究
语义分析
文本分类
移动互联网
计算机智能
基于词义消歧的卷积神经网络文本分类模型
文本分类
卷积神经网络
长短时记忆网络
特征提取
自然语言处理
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于语义依存分析的图网络文本分类模型
来源期刊 计算机应用研究 学科
关键词 语义依存分析 词嵌入 语义图网络块 文本分类
年,卷(期) 2020,(12) 所属期刊栏目 算法研究探讨
研究方向 页码范围 3594-3598
页数 5页 分类号 TP391
字数 语种 中文
DOI 10.19734/j.issn.1001-3695.2019.08.0522
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 姚绍文 44 299 10.0 15.0
2 刘璟 5 1 1.0 1.0
3 范国凤 1 0 0.0 0.0
4 栾桂凯 2 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (14)
共引文献  (54)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1748(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(0)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
语义依存分析
词嵌入
语义图网络块
文本分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用研究
月刊
1001-3695
51-1196/TP
大16开
1984-01-01
chi
出版文献量(篇)
21004
总下载数(次)
0
总被引数(次)
238385
论文1v1指导