基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
文章提出一种基于特征约束编码的图像检索方法,在第一个全连接层后添加一个维度较低的编码层,考虑到编码阶段引入的非线性操作会导致梯度消失的风险,添加分类损失用于防止网络产生梯度消失.另外对编码特征也添加了相应的约束条件提升图像特征的区分度,从而提高特征的表达能力.在Cifar-10和Caltech-256数据集上进行了实验,针对不同长度的哈希编码特征,从网络的分类精度和平均查准率上进行了性能评估,实验结果表明:文章所提出的方法不仅能有效降低特征维数而且能提升特征编码能力,并在Cifar-10数据集上达到0.897 2的检索精度.通过实验分析表明,将图像的特征激活数值进行相应的约束有助于提升特征的区分度,并且添加额外的分类损失能够解决非线性操作产生梯度消失的风险.
推荐文章
结合卷积神经网络与哈希编码的图像检索方法
图像检索
卷积神经网络
哈希编码
网络模型
图片对生成
网络训练
基于深度卷积神经网络的图像检索算法研究
图像检索
卷积神经网络
特征提取
深度学习
基于卷积神经网络的灯具商品图像检索
卷积神经网络
商品图片搜索
YOLO算法
多标签分类任务
基于t-SNE卷积编码的图像检索方法
图像检索
特征提取
卷积神经网络
降维
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络约束编码的图像检索方法
来源期刊 山西大学学报(自然科学版) 学科 工学
关键词 深度学习 卷积神经网络 哈希方法 基于内容的图像检索
年,卷(期) 2020,(2) 所属期刊栏目 信息科学
研究方向 页码范围 280-286
页数 7页 分类号 TP391.41
字数 语种 中文
DOI 10.13451/j.sxu.ns.2019086
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 杨红菊 14 185 6.0 13.0
2 陈庚峰 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (36)
共引文献  (9)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1963(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(3)
  • 参考文献(1)
  • 二级参考文献(2)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(1)
  • 参考文献(0)
  • 二级参考文献(1)
2017(4)
  • 参考文献(2)
  • 二级参考文献(2)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
卷积神经网络
哈希方法
基于内容的图像检索
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
山西大学学报(自然科学版)
季刊
0253-2395
14-1105/N
大16开
太原市坞城路92号
22-42
1960
chi
出版文献量(篇)
2646
总下载数(次)
7
总被引数(次)
12039
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导