基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对图像检索,提出一种基于哈希编码和卷积神经网络的方法.主要是在卷积神经网络(CNN)中加入哈希层,采用由粗到精的分级检索策略,根据学习到的哈希码进行粗检索得到与查询图像相同或相似的m幅图像构成图像池,计算池内图像与查询图像高层语义特征之间的欧氏距离进行精检索,达到最终的检索目的.提出方法将哈希层的损失作为优化目标之一,结合图像的两种特征进行检索,弥补了现有方法中直接利用CNN深层特征检索耗时、占用内存的不足.在印花织物和CIFAR-10数据集上的实验结果表明,提出方法检索性能优于其他现有方法.
推荐文章
结合卷积神经网络与哈希编码的图像检索方法
图像检索
卷积神经网络
哈希编码
网络模型
图片对生成
网络训练
基于深度卷积神经网络的图像检索算法研究
图像检索
卷积神经网络
特征提取
深度学习
基于卷积神经网络和哈希编码的图像检索方法
图像检索
人工特征
卷积神经网络
卷积特征
哈希编码
基于卷积神经网络的灯具商品图像检索
卷积神经网络
商品图片搜索
YOLO算法
多标签分类任务
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于哈希编码和卷积神经网络的图像检索方法
来源期刊 计算机工程与应用 学科 工学
关键词 图像检索 卷积神经网络 哈希编码 分级检索
年,卷(期) 2019,(23) 所属期刊栏目 图形图像处理
研究方向 页码范围 194-199
页数 6页 分类号 TP751
字数 5340字 语种 中文
DOI 10.3778/j.issn.1002-8331.1809-0039
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 景军锋 西安工程大学电子信息学院 143 578 12.0 16.0
2 王妙 西安工程大学电子信息学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (36)
共引文献  (50)
参考文献  (13)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(5)
  • 参考文献(1)
  • 二级参考文献(4)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(6)
  • 参考文献(3)
  • 二级参考文献(3)
2016(5)
  • 参考文献(2)
  • 二级参考文献(3)
2017(4)
  • 参考文献(2)
  • 二级参考文献(2)
2018(3)
  • 参考文献(3)
  • 二级参考文献(0)
2019(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像检索
卷积神经网络
哈希编码
分级检索
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导