基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
当前主流的图像检索方法采用的视觉特征,缺乏自主学习能力,导致其图像表达能力不强,此外,传统的特征索引方法检索效率较低,难以适用于大规模图像数据.针对这些问题,本文提出了一种基于卷积神经网络和监督核哈希的图像检索方法.首先,利用卷积神经网络的学习能力挖掘训练图像内容的内在隐含关系,提取图像深层特征,增强特征的视觉表达能力和区分性;然后,利用监督核哈希方法对高维图像深层特征进行监督学习,并将高维特征映射到低维汉明空间中,生成紧致的哈希码;最后,在低维汉明空间中完成对大规模图像数据的有效检索.在ImageNet-1000和Caltech-256数据集上的实验结果表明,本文方法能够有效地增强图像特征的表达能力,提高图像检索效率,优于当前主流方法.
推荐文章
结合卷积神经网络与哈希编码的图像检索方法
图像检索
卷积神经网络
哈希编码
网络模型
图片对生成
网络训练
基于深度卷积神经网络的图像检索算法研究
图像检索
卷积神经网络
特征提取
深度学习
基于卷积神经网络的灯具商品图像检索
卷积神经网络
商品图片搜索
YOLO算法
多标签分类任务
基于3D卷积神经网络的视频哈希算法
深度学习
哈希算法
视频检索
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络和监督核哈希的图像检索方法
来源期刊 电子学报 学科 工学
关键词 深度学习 图像检索 卷积神经网络 近似近邻检索 监督核哈希
年,卷(期) 2017,(1) 所属期刊栏目 学术论文
研究方向 页码范围 157-163
页数 7页 分类号 TP391
字数 5741字 语种 中文
DOI 10.3969/j.issn.0372-2112.2017.01.022
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李弼程 解放军信息工程大学信息系统工程学院 77 636 13.0 22.0
2 彭天强 河南工程学院计算机学院 14 115 4.0 10.0
3 柯圣财 解放军信息工程大学信息系统工程学院 4 62 4.0 4.0
4 赵永威 武警工程大学电子技术系 5 68 3.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (12)
节点文献
引证文献  (43)
同被引文献  (60)
二级引证文献  (47)
1980(1)
  • 参考文献(1)
  • 二级参考文献(0)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(7)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(7)
  • 二级引证文献(0)
2017(7)
  • 引证文献(7)
  • 二级引证文献(0)
2018(16)
  • 引证文献(14)
  • 二级引证文献(2)
2019(42)
  • 引证文献(20)
  • 二级引证文献(22)
2020(25)
  • 引证文献(2)
  • 二级引证文献(23)
研究主题发展历程
节点文献
深度学习
图像检索
卷积神经网络
近似近邻检索
监督核哈希
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子学报
月刊
0372-2112
11-2087/TN
大16开
北京165信箱
2-891
1962
chi
出版文献量(篇)
11181
总下载数(次)
11
总被引数(次)
206555
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导