基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对细粒度鱼类分类样本单一、数量稀少、类别不均衡以及水下样本图像分辨率低等问题,提出一种基于对抗双线性的细粒度鱼类图像分类方法.利用生成对抗网络生成一定数量的伪鱼类样本做数据扩增,以提升模型的泛化性;采用双线性网络捕获输入图像不同语义特征之间的关系,加强网络对图像判别性区域的响应,达到对鱼类图像更精准的识别效果.在Fish100数据集上的实验结果表明,该方法具有良好的性能,能够有效地实现细粒度鱼类分类.
推荐文章
基于核化双线性卷积网络的细粒度图像分类
核化双线性聚合
双线性卷积网络
端到端学习
细粒度图像分类
基于静态行为特征的细粒度Android恶意软件分类
Android
静态特征
细粒度恶意分类
基于HBase的细粒度访问控制方法研究
HBase
访问控制
细粒度权限
数据库角色
基于卷积网络的车辆定位与细粒度分类算法
卷积神经网络
细分车型识别
车牌定位
区域回归
多标签分类
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于对抗双线性的细粒度鱼类图像分类方法
来源期刊 桂林电子科技大学学报 学科 工学
关键词 鱼类分类 细粒度分类 生成对抗网络 双线性网络
年,卷(期) 2020,(4) 所属期刊栏目 计算机与自动化
研究方向 页码范围 316-320
页数 5页 分类号 TP391.4
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (13)
共引文献  (2)
参考文献  (2)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2018(2)
  • 参考文献(0)
  • 二级参考文献(2)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
鱼类分类
细粒度分类
生成对抗网络
双线性网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
桂林电子科技大学学报
双月刊
1673-808X
45-1351/TN
大16开
广西桂林市金鸡路1号
1981
chi
出版文献量(篇)
2598
总下载数(次)
1
总被引数(次)
11679
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导