基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Combining both visible and infrared object information, multispectral data is a promising source data for automatic maritime ship recognition. In this paper, in order to take advantage of deep convolutional neural network and multispectral data, we model multispectral ship recognition task into a convolutional feature fusion problem, and propose a feature fusion architecture called Hybrid Fusion. We fine-tune the VGG-16 model pre-trained on ImageNet through three channels single spectral image and four channels multispectral images, and use existing regularization techniques to avoid over-fitting problem. Hybrid Fusion as well as the other three feature fusion architectures is investigated. Each fusion architecture consists of visible image and infrared image feature extraction branches, in which the pre-trained and fine-tuned VGG-16 models are taken as feature extractor. In each fusion architecture, image features of two branches are firstly extracted from the same layer or different layers of VGG-16 model. Subsequently, the features extracted from the two branches are flattened and concatenated to produce a multispectral feature vector, which is finally fed into a classifier to achieve ship recognition task. Furthermore, based on these fusion architectures, we also evaluate recognition performance of a feature vector normalization method and three combinations of feature extractors. Experimental results on the visible and infrared ship (VAIS) dataset show that the best Hybrid Fusion achieves 89.6% mean per-class recognition accuracy on daytime paired images and 64.9% on nighttime infrared images, and outperforms the state-of-the-art method by 1.4% and 3.9%, respectively.
推荐文章
Hilbert空间中K-fusion框架的稳定性
算子
Hilbert空间
K-fusion框架
fusion框架
基于Feature的WEB GIS空间信息共享方案的研究
GIS
WEB GIS
FEATURE
空间信息共享
Deep web接口查询能力估计
查询接口
查询能力
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Deep Convolutional Feature Fusion Model for Multispectral Maritime Imagery Ship Recognition
来源期刊 电脑和通信(英文) 学科 工学
关键词 Deep Convolutional Neural Network Feature Fusion Multispectral Data Ob-ject Recognition
年,卷(期) dnhtxyw_2020,(11) 所属期刊栏目
研究方向 页码范围 23-43
页数 21页 分类号 TP3
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Deep
Convolutional
Neural
Network
Feature
Fusion
Multispectral
Data
Ob-ject
Recognition
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
论文1v1指导