基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
以我国中小企业板上市公司退市风险预警为例,利用弹性反向传播算法(resilient back propagation,Rprop)和因子分析法相结合,建立了一种基于因子分析的Rprop神经网络模型.首先利用因子分析法构建包含财务变量和非财务变量的预警体系;其次运用Rprop神经网络模型对我国160家中小企业板上市公司进行退市风险预警实证分析;最后对该模型的有效性进行了实证分析,结果表明,该模型对上市公司退市风险预警的准确性比标准的BP神经网络模型和支持向量机模型分别提高了2.91%和6.09%.因此,该模型可为投资者决策提供较好的参考依据.
推荐文章
我国中小企业上市公司营运资本结构的实证分析
中小企业上市公司
营运资本结构
实证分析
基于SPSS分析平台的上市公司财务预警模型
财务失败
SPSS
预测模型
实证检验
基于Logistic回归模型的建筑业上市公司财务风险预警分析
Logistic回归
财务预警模型
独立样本T检验
建筑业上市公司
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 中小企业板上市公司退市风险预警研究——基于因子分析的Rprop神经网络模型分析
来源期刊 齐齐哈尔大学学报(自然科学版) 学科 经济
关键词 退市风险预警 Rprop神经网络 因子分析 Matlab
年,卷(期) 2020,(4) 所属期刊栏目
研究方向 页码范围 69-73
页数 5页 分类号 F204
字数 3224字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 虞文美 安徽财经大学金融学院 34 118 6.0 9.0
2 方扶星 安徽财经大学金融学院 5 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (48)
共引文献  (3)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1984(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(3)
  • 参考文献(1)
  • 二级参考文献(2)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(5)
  • 参考文献(1)
  • 二级参考文献(4)
2016(4)
  • 参考文献(0)
  • 二级参考文献(4)
2017(6)
  • 参考文献(1)
  • 二级参考文献(5)
2018(6)
  • 参考文献(3)
  • 二级参考文献(3)
2019(4)
  • 参考文献(2)
  • 二级参考文献(2)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
退市风险预警
Rprop神经网络
因子分析
Matlab
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
齐齐哈尔大学学报(自然科学版)
双月刊
1007-984X
23-1419/N
大16开
齐齐哈尔市文化大街42号
14-103
1979
chi
出版文献量(篇)
3573
总下载数(次)
8
总被引数(次)
8631
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导