基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了准确计算配电网线路损耗,进行窃电位置的判断,提出改进粒子群算法优化RBF神经网络的计算和分析模型.以机器学习为切入点,通过数据驱动的方式,利用改进粒子群算法优化RBF神经网络重要参数,分别构建了相关线损计算和分析模型,基于IEEE13节点配电网络参数,实现理论线损计算和窃电位置判断.通过Matlab仿真验证上述模型的准确性和可靠性.
推荐文章
基于遗传算法优化神经网络的智能配电网线损计算研究
神经网络
遗传算法
智能配电网
优化
理论线损
拟合
基于PSO优化RBF神经网络的溶解氧预测算法研究
渔业养殖
物联网
径向基函数神经网络
粒子群算法
溶解氧预测
浅谈地铁网络线路优化
地铁
地铁网络
线路优化
基于PSO的RBF神经网络的变频调速系统的研究
粒子群
BP神经网络
变频调速系统
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进PSO优化RBF神经网络线损计算与分析
来源期刊 东北电力技术 学科 工学
关键词 粒子群算法 人工神经网络算法 线损计算 窃电分析
年,卷(期) 2020,(4) 所属期刊栏目 分析与应用
研究方向 页码范围 55-59
页数 5页 分类号 TP18
字数 3764字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 赵允 2 0 0.0 0.0
2 何立强 2 0 0.0 0.0
3 于景亮 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (104)
共引文献  (79)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(5)
  • 参考文献(0)
  • 二级参考文献(5)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(4)
  • 参考文献(0)
  • 二级参考文献(4)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(6)
  • 参考文献(0)
  • 二级参考文献(6)
2015(15)
  • 参考文献(0)
  • 二级参考文献(15)
2016(6)
  • 参考文献(1)
  • 二级参考文献(5)
2017(15)
  • 参考文献(1)
  • 二级参考文献(14)
2018(7)
  • 参考文献(0)
  • 二级参考文献(7)
2019(9)
  • 参考文献(6)
  • 二级参考文献(3)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
粒子群算法
人工神经网络算法
线损计算
窃电分析
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
东北电力技术
月刊
1004-7913
21-1282/TM
大16开
沈阳市和平区四平街39号
1980
chi
出版文献量(篇)
4056
总下载数(次)
9
总被引数(次)
15617
论文1v1指导