A path <i>π</i> = [<i>v</i><sub>1</sub>, <i>v</i><sub>2</sub>, …, <i>v</i><sub><em>k</em></sub>] in a graph <i>G</i> = (<i>V</i>, <i>E</i>) is an uphill path if <i>deg</i>(<i>v</i><sub><i>i</i></sub>) ≤ <i>deg</i>(<i>v</i><sub><i>i</i>+1</sub>) for every 1 ≤ <i>i</i> ≤ <i>k</i>. A subset <i>S </i><span style="white-space:nowrap;"><span style="white-space:nowrap;">⊆</span></span> <i>V</i>(<i>G</i>) is an uphill dominating set if every vertex <i>v</i><sub><i>i</i></sub> <span style="white-space:nowrap;"><span style="white-space:nowrap;">∈</span> </span><i>V</i>(<i>G</i>) lies on an uphill path originating from some vertex in <i>S</i>. The uphill domination number of <i>G</i> is denoted by <i><span style="white-space:nowrap;"><i><span style="white-space:nowrap;"><i>γ</i></span></i></span></i><sub><i>up</i></sub>(<i>G</i>) and is the minimum cardinality of the uphill dominating set of <i>G</i>. In this paper, we introduce the uphill domination polynomial of a graph <i>G</i>. The uphill domination polynomial of a graph <i>G</i> of <i>n</i> vertices is the polynomial <img src="Edit_75fb5c37-6ef5-4292-9d3a-4b63343c48ce.bmp" alt="" />, where <em>up</em>(<i>G</i>, <i>i</i>) is the number of uphill dominating sets of size <i>i</i> in <i>G</i>, and <i><span style="white-space:nowrap;"><i><span style="white-space:nowrap;"><i>γ</i></span></i></span></i><i><sub>up</sub></i>(<i>G</i>) is the uphill domination number of <i>G</i>, we compute the uphill domination polynomial and its roots for some families of standard graphs. Also, <i>UP</i>(<i>G</i>, <em>x</em>) for some graph operations is obtained.