基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
多标记特征选择是机器学习和人工智能领域的研究热点之一,现有多标记学习的研究是假设每个示例的标记呈均匀分布,即每个示例的各个相关标记的重要程度相同.然而,在许多应用领域中这些相关标记的重要程度往往不同.为此,本文提出了一种标记增强方法,可将多标记数据中传统的逻辑标记转化为监督信息更丰富的标记分布;同时,从代价敏感学习视角,构造了基于特征代价与特征依赖度的特征重要性度量准则,在此基础上,设计了面向标记分布数据的代价敏感特征选择算法;最后,通过在真实的多标记数据集上的实验对比与分析,验证了算法的有效性和可行性.
推荐文章
代价敏感数据的多标记特征选择算法
特征选择
属性约简
代价敏感
粗糙集
粒计算
多标记学习
信息熵
正态分布
采用多类代价指数损失函数的代价敏感AdaBoost算法
代价敏感
AdaBoost算法
多分类
贝叶斯决策
损失函数
边缘标记弱化的多标记特征选择算法
多标记学习
特征选择
标记分布
边缘标记
基于图谱的多标记特征选择算法
多标记学习
谱特征选择
标记关联性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于标记增强的多标记代价敏感特征选择算法
来源期刊 小型微型计算机系统 学科 工学
关键词 特征选择 粗糙集 属性约简 多标记学习 代价敏感 标记增强
年,卷(期) 2020,(4) 所属期刊栏目 人工智能与算法研究
研究方向 页码范围 685-691
页数 7页 分类号 TP18
字数 8554字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王映龙 江西农业大学计算机与信息工程学院 82 408 13.0 17.0
2 钱文彬 江西农业大学计算机与信息工程学院 16 34 3.0 5.0
6 黄锦涛 江西农业大学计算机与信息工程学院 2 6 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (42)
共引文献  (10)
参考文献  (18)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1982(1)
  • 参考文献(1)
  • 二级参考文献(0)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(6)
  • 参考文献(1)
  • 二级参考文献(5)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(8)
  • 参考文献(1)
  • 二级参考文献(7)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(4)
  • 参考文献(3)
  • 二级参考文献(1)
2016(4)
  • 参考文献(2)
  • 二级参考文献(2)
2017(4)
  • 参考文献(3)
  • 二级参考文献(1)
2018(5)
  • 参考文献(5)
  • 二级参考文献(0)
2019(2)
  • 参考文献(1)
  • 二级参考文献(1)
2020(3)
  • 参考文献(0)
  • 二级参考文献(3)
2020(3)
  • 参考文献(0)
  • 二级参考文献(3)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
特征选择
粗糙集
属性约简
多标记学习
代价敏感
标记增强
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
小型微型计算机系统
月刊
1000-1220
21-1106/TP
大16开
辽宁省沈阳市东陵区南屏东路16号
8-108
1980
chi
出版文献量(篇)
11026
总下载数(次)
17
总被引数(次)
83133
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导