基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
风电功率的随机波动性是制约风电功率预测精度提高的关键问题之一,其中风速波动性以及风电转换不确定性是造成风电功率波动的两个主要原因.本文首先分析在风电功率预测中计及风电场状态的必要性;其次以风机运行状态充当输入变量,采用互信息理论修正外部NWP风速,引入集对分析对风电场内部状态特征参量进行匹配预测,构建计及风电场运行状态的以一种多输入-单输出的RBF神经网络为核心的风功率预测框架;最后采用吉林省某风电场的实际数据进行分析.对比多种预测算法,通过算例结果表明,所提方法可以有效地提升风电功率预测的精度.
推荐文章
基于风速融合和NARX神经网络的短期风电功率预测
短期风电功率预测
预测模型
NARX神经网络
风速融合
数据融合
数据处理
基于NWP和深度学习神经网络短期风功率预测
风功率预测
深度学习神经网络
数值天气预报
建立转换模型
概率密度
案例分析
基于动态集成LSSVR的超短期风电功率预测
超短期风电功率预测
最小二乘支持向量回归
动态集成
动态时间弯曲距离
数值天气预报
基于Elman神经网络模型的短期光伏发电功率预测
光伏发电
功率预测
相似日
Elman神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合RBF神经网络和集对分析的风电功率超短期预测
来源期刊 昆明理工大学学报(自然科学版) 学科
关键词 风功率预测 风电场态势预估 风速修正 秩次集对分析 RBF神经网络
年,卷(期) 2020,(5) 所属期刊栏目 能源科学与电力工程|Energy Science and Power Engineering
研究方向 页码范围 49-58
页数 10页 分类号 TM614
字数 语种 中文
DOI 10.16112/j.cnki.53-1223/n.2020.05.008
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (109)
共引文献  (89)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(0)
  • 二级参考文献(4)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(10)
  • 参考文献(0)
  • 二级参考文献(10)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(12)
  • 参考文献(2)
  • 二级参考文献(10)
2014(9)
  • 参考文献(0)
  • 二级参考文献(9)
2015(10)
  • 参考文献(0)
  • 二级参考文献(10)
2016(9)
  • 参考文献(1)
  • 二级参考文献(8)
2017(10)
  • 参考文献(4)
  • 二级参考文献(6)
2018(7)
  • 参考文献(0)
  • 二级参考文献(7)
2019(6)
  • 参考文献(2)
  • 二级参考文献(4)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
风功率预测
风电场态势预估
风速修正
秩次集对分析
RBF神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
昆明理工大学学报(自然科学版)
双月刊
1007-855/X
53-1123/T
大16开
云南省昆明市呈贡区景明南路727号
64-79
1959
chi
出版文献量(篇)
3434
总下载数(次)
7
总被引数(次)
25009
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导