基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了缓解神经网络的“黑盒子”机制引起的算法可解释性低的问题,基于使用证据推理算法的置信规则库推理方法(以下简称RIMER)提出了一个规则推理网络模型.该模型通过RIMER中的置信规则和推理机制提高网络的可解释性.首先证明了基于证据推理的推理函数是可偏导的,保证了算法的可行性;然后,给出了规则推理网络的网络框架和学习算法,利用RIMER中的推理过程作为规则推理网络的前馈过程,以保证网络的可解释性;使用梯度下降法调整规则库中的参数以建立更合理的置信规则库,为了降低学习复杂度,提出了“伪梯度”的概念;最后,通过分类对比实验,分析了所提算法在精确度和可解释性上的优势.实验结果表明,当训练数据集规模较小时,规则推理网络的表现良好,当训练数据规模扩大时,规则推理网络也能达到令人满意的结果.
推荐文章
基于规则推理的军事概念模型验证方法研究
军事概念模型验证
语义验证
规则推理
语义网规则语言
基于证据推理的确定因子规则库推理方法
不确定性推理
知识表示
确定因子规则库
证据推理
基于Spark的OWL语义规则并行化推理算法
语义推理
网络本体语言
OWL Horst规则
并行化
Spark
基于神经网络模型的成员推理防御算法
机器学习
神经网络
成员推理攻击
数据安全
隐私保护
模型推理
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于规则推理网络的分类模型
来源期刊 软件学报 学科 工学
关键词 规则推理 RIMER 可解释性网络 机器学习 不确定性分类
年,卷(期) 2020,(4) 所属期刊栏目 非经典条件下的机器学习方法专题
研究方向 页码范围 1063-1078
页数 16页 分类号 TP181
字数 11167字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄德根 大连理工大学计算机科学与技术学院 70 1191 19.0 33.0
2 邹丽 辽宁师范大学计算机与信息技术学院 41 117 6.0 8.0
3 张云霞 大连理工大学计算机科学与技术学院 4 16 1.0 4.0
4 刘壮 大连理工大学计算机科学与技术学院 4 0 0.0 0.0
5 林红梅 辽宁师范大学计算机与信息技术学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (7)
共引文献  (11)
参考文献  (29)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1993(1)
  • 参考文献(1)
  • 二级参考文献(0)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(4)
  • 参考文献(4)
  • 二级参考文献(0)
2016(5)
  • 参考文献(5)
  • 二级参考文献(0)
2017(5)
  • 参考文献(5)
  • 二级参考文献(0)
2018(6)
  • 参考文献(6)
  • 二级参考文献(0)
2019(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
规则推理
RIMER
可解释性网络
机器学习
不确定性分类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件学报
月刊
1000-9825
11-2560/TP
16开
北京8718信箱
82-367
1990
chi
出版文献量(篇)
5820
总下载数(次)
36
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导