基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
视觉图像检测在机器视觉领域有着重要的研究意义和应用价值.近年来,卷积神经网络的发展带动了视觉图像检测领域的进步.大量新理论、新方法被应用于卷积神经网络,提高了网络对特征的表达能力,降低了网络的复杂性,增强了网络的性能.研究阐述了卷积神经网络的基本构成,从卷积层,池化层,激活函数,网络正则化和网络优化等方面总结了卷积神经网络近年来的改进方法,梳理了卷积神经网络在视觉图像检测领域的应用,总结了卷积神经网络在视觉图像检测领域的优点,并展望了未来的研究方向.
推荐文章
卷积神经网络在医学图像分割中的研究进展
卷积神经网络
医学图像
图像分割
深度学习
综述
基于卷积神经网络的目标检测研究综述
卷积神经网络
目标检测
深度学习
基于卷积神经网络的图像检测识别算法综述
卷积神经网络
图像检测
图像识别
基于卷积神经网络的辐射图像降噪方法研究
辐射图像
图像降噪
卷积神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 卷积神经网络在视觉图像检测的研究进展
来源期刊 仪器仪表学报 学科 工学
关键词 卷积神经网络 深度学习 机器视觉 图像检测
年,卷(期) 2020,(4) 所属期刊栏目 视觉检测与图像测量
研究方向 页码范围 167-182
页数 16页 分类号 TP183|TH744
字数 语种 中文
DOI 10.19650/j.cnki.cjsi.J2006003
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 蓝金辉 23 275 10.0 16.0
2 王迪 5 18 2.0 4.0
3 申小盼 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (17)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1962(1)
  • 参考文献(1)
  • 二级参考文献(0)
1980(1)
  • 参考文献(1)
  • 二级参考文献(0)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(1)
  • 参考文献(1)
  • 二级参考文献(0)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(3)
  • 参考文献(3)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2019(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
卷积神经网络
深度学习
机器视觉
图像检测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
仪器仪表学报
月刊
0254-3087
11-2179/TH
大16开
北京市东城区北河沿大街79号
2-369
1980
chi
出版文献量(篇)
12507
总下载数(次)
27
论文1v1指导