针对传统分类学习算法的准确性现状进行了研究,提出了一种基于降噪自编码的组合分类算法(Ensemble Learning based on Denosing Autoencoder,ELDA).与Bagging、Adaboost以及Rotation Forest等传统的组合分类器学习方法不同,ELDA首先通过使用降噪自编码算法将数据集映射到新的特征空间,然后在此空间学习得到决策树作为基分类器,最后对数据集进行类别预测.通过与Bagging、Adaboost及Rotation Forest学习方法相比,结果表明:ELDA在预测精度上显著优于对比算法.