本研究在睁眼(eyes-open,EO)和闭眼(eyes-closed,EC)两种静息态下提取了45位健康被试的脑功能参数比率低频振幅(fractional amplitude of low frequency fluctuation,fALFF)和局部一致性(regional homoge-neity,ReHo)数据,比较并分析了基于线性核的支持向量机(SVM)、基于RBF核的支持向量机、朴素贝叶斯、决策树、随机森林和自适应增强(Adaboost)6种机器学习方法在数据上的分类效果.实验表明,对单一特征数据分类时,朴素贝叶斯算法对fALFF数据的分类效果最好,线性核的SVM算法对ReHo数据的分类效果最好;对fALFF和ReHo数据相融合的多层次特征数据分类时,朴素贝叶斯算法的分类效果最好.此外,本研究对单一特征数据与多层次特征数据在6种机器学习方法上进行分类比较,结果表明利用多层次特征数据时,基于RB F核的SVM,朴素贝叶斯和随机森林算法的分类效果有所提升.本研究基于不同机器学习方法和不同层次特征数据的分类比较,为EO和EC静息态脑功能活动和其他脑病理的研究提供了相关的参考依据.