基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
现有的社会化推荐算法未考虑信任用户对目标用户深层的偏好影响.针对这一问题,提出了一种基于深度学习的混合推荐算法,利用降噪自编码器学习用户及其信任用户的评分偏好,使用加权隐藏层来平衡这些表示的重要性,有效建模用户间的潜在偏好交互.在此基础上,通过用户聚类和个性化权重区分不同类的用户受其信任用户的影响程度.在开放数据集上的实验结果表明,该算法优于现有的社会化推荐算法,与主要的推荐算法SoRec、RSTE、SocialMF、TrustMF相比,其平均绝对误差(MAE)和均方根误差(RMSE)显著降低,获得了较好的推荐效果.
推荐文章
基于多重降噪自编码器模型的top-N推荐算法
预测精度
用户评分
加噪操作
多重降噪自编码器
基于栈式降噪自编码器的协同过滤算法
推荐系统
协同过滤
深度学习
栈式降噪自编码器
融合降噪自编码器与BPSO的特征组合方法及其中医应用
降噪自编码器
二进制粒子群算法
非线性
中医药
一种基于降噪自编码器的人脸表情识别方法
表情识别
降噪自编码器
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于降噪自编码器的社会化推荐算法
来源期刊 计算机工程与科学 学科 工学
关键词 推荐系统 社交网络 降噪自编码器 深度学习 混合推荐
年,卷(期) 2020,(5) 所属期刊栏目 人工智能与数据挖掘
研究方向 页码范围 944-950
页数 7页 分类号 TP181
字数 4955字 语种 中文
DOI 10.3969/j.issn.1007-130X.2020.05.023
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李前洋 重庆邮电大学通信与信息工程学院 3 0 0.0 0.0
5 罗思烦 重庆邮电大学通信与信息工程学院 3 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (75)
共引文献  (50)
参考文献  (7)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(2)
  • 参考文献(1)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(1)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(0)
  • 二级参考文献(2)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(3)
  • 参考文献(1)
  • 二级参考文献(2)
2015(13)
  • 参考文献(0)
  • 二级参考文献(13)
2016(15)
  • 参考文献(1)
  • 二级参考文献(14)
2017(26)
  • 参考文献(0)
  • 二级参考文献(26)
2018(3)
  • 参考文献(0)
  • 二级参考文献(3)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
推荐系统
社交网络
降噪自编码器
深度学习
混合推荐
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与科学
月刊
1007-130X
43-1258/TP
大16开
湖南省长沙市开福区德雅路109号国防科技大学计算机学院
42-153
1973
chi
出版文献量(篇)
8622
总下载数(次)
11
总被引数(次)
59030
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导