基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对Tiny YOLOV3目标检测算法在实时检测中对行人等小目标漏检率高的问题,对该算法的特征提取网络、预测网络、损失函数等进行研究改进.首先,在特征提取网络中增加2步长的卷积层,代替原网络中的最大池化层进行下采样;接着,使用深度可分离卷积构造反残差块替换传统卷积,降低模型尺寸和参数量,增加高维特征提取;然后,在原网络两尺度预测的基础上增加一尺度,形成三尺度预测;最后,对损失函数中的边界框位置误差项进行优化.实验结果表明,改进后的Tiny YOLOV3算法的目标检测准确率比原算法提高了9.8%,满足实时性要求,具有一定鲁棒性.本文方法能够更好地提取目标特征,多尺度预测和边界框位置误差的改进能更准确地对目标进行检测.
推荐文章
基于YOLOv3的车辆多目标检测
车辆
多目标检测
Darknet-53网络
YOLOv3
自适应边缘优化的改进YOLOV3目标识别算法
目标检测
零件识别
卷积神经网络
YOLOV3
PSO
一种基于改进Yolov3的弹载图像多目标检测方法
弹载图像
目标检测
YOLOv3
位置损失
快速NMS
基于改进 YOLOv3 的葡萄叶部病虫害检测方法
葡萄病害检测
深度学习
轻量化
注意力机制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Tiny YOLOV3目标检测改进
来源期刊 光学精密工程 学科 工学
关键词 目标检测 Tiny YOLOV3 深度可分离卷积 反残差块 多尺度预测
年,卷(期) 2020,(4) 所属期刊栏目 信息科学
研究方向 页码范围 988-995
页数 8页 分类号 TP391
字数 3674字 语种 中文
DOI 10.3788/OPE.20202804.0988
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 欧阳航空 上海大学机电工程与自动化学院 16 155 6.0 12.0
2 马立 上海大学机电工程与自动化学院 34 275 8.0 16.0
3 巩笑天 上海大学机电工程与自动化学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (65)
共引文献  (85)
参考文献  (8)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(8)
  • 参考文献(0)
  • 二级参考文献(8)
2011(5)
  • 参考文献(1)
  • 二级参考文献(4)
2012(2)
  • 参考文献(1)
  • 二级参考文献(1)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(9)
  • 参考文献(0)
  • 二级参考文献(9)
2016(13)
  • 参考文献(1)
  • 二级参考文献(12)
2017(10)
  • 参考文献(2)
  • 二级参考文献(8)
2018(4)
  • 参考文献(2)
  • 二级参考文献(2)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
目标检测
Tiny YOLOV3
深度可分离卷积
反残差块
多尺度预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
光学精密工程
月刊
1004-924X
22-1198/TH
大16开
长春市东南湖大路3888号
12-166
1959
chi
出版文献量(篇)
6867
总下载数(次)
10
总被引数(次)
98767
论文1v1指导