基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
基于深度卷积神经网络的目标检测算法已成为目标检测领域中的研究热点,它包括基于区域提议的两阶段目标检测算法和基于位置回归的一阶段目标检测算法.Faster R-CNN是两阶段目标检测的典型算法之一,但是,训练数据集中简单样本-难分样本数量不平衡,以及样本数据的类间不平衡,都是影响Faster R-CNN检测精度的重要原因.本文提出一种基于可变权重损失函数Focal Loss和难例挖掘模块的改进Faster R-CNN算法.具体地,在网络的分类部分引入Fo-cal Loss函数,通过权重调节样本数据的类间不平衡,改善简单样本-难分样本的数量不平衡;同时,修改网络结构,引入难例挖掘模块,进一步平衡简单样本-难分样本的数量,提高网络的检测性能.本文采用不同数据集,不同基础网络来测试提出的算法性能.实验结果表明,在VGG-16基础网络下,本文算法在Pascal VOC 2007数据集上平均检测精度较原算法提高了0.9个百分点,在Pascal VOC 07+12数据集上提高了1.7个百分点;在Res-101基础网络上,在Pascal VOC 2007数据集上平均检测精度较原算法提高了1.3个百分点,在Pascal VOC 07+12数据集上提高了1.5个百分点.
推荐文章
基于DRN和Faster R-CNN融合模型的行为识别算法
行为识别
扩张残差网络
Faster R-CNN
基于改进Faster R-CNN算法的两轮车视频检测
两轮车视频检测
两轮车检测模型
改进FasterR-CNN算法
RPN网络
参数修改
多尺度特征融合
一种改进的Faster R-CNN对小尺度车辆检测研究
FasterR-CNN
小尺度车辆检测
全卷积网络
区域建议网络
锚选择
平衡锚数量
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于可变权重损失函数和难例挖掘模块的Faster R-CNN改进算法
来源期刊 计算机与现代化 学科 工学
关键词 深度学习 目标检测 焦点损失 难例挖掘
年,卷(期) 2020,(8) 所属期刊栏目 算法设计与分析
研究方向 页码范围 56-62
页数 7页 分类号 TP391.4
字数 4824字 语种 中文
DOI 10.3969/j.issn.1006-2475.2020.08.009
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 项文波 南京理工大学自动化学院 3 8 1.0 2.0
2 钱惠敏 河海大学能源与电气学院 6 10 3.0 3.0
3 施非 河海大学能源与电气学院 1 0 0.0 0.0
4 邱臻 1 0 0.0 0.0
5 韩勤 1 0 0.0 0.0
6 李金耿 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (159)
共引文献  (42)
参考文献  (18)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1976(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1979(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(6)
  • 参考文献(0)
  • 二级参考文献(6)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(4)
  • 参考文献(0)
  • 二级参考文献(4)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(5)
  • 参考文献(0)
  • 二级参考文献(5)
2010(10)
  • 参考文献(0)
  • 二级参考文献(10)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(7)
  • 参考文献(1)
  • 二级参考文献(6)
2013(9)
  • 参考文献(0)
  • 二级参考文献(9)
2014(4)
  • 参考文献(1)
  • 二级参考文献(3)
2015(9)
  • 参考文献(0)
  • 二级参考文献(9)
2016(14)
  • 参考文献(0)
  • 二级参考文献(14)
2017(31)
  • 参考文献(0)
  • 二级参考文献(31)
2018(26)
  • 参考文献(4)
  • 二级参考文献(22)
2019(13)
  • 参考文献(12)
  • 二级参考文献(1)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
深度学习
目标检测
焦点损失
难例挖掘
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机与现代化
月刊
1006-2475
36-1137/TP
大16开
南昌市井冈山大道1416号
44-121
1985
chi
出版文献量(篇)
9036
总下载数(次)
25
总被引数(次)
56782
论文1v1指导