基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对代码复用在同一恶意家族样本中普遍存在的现象,提出了一种利用代码复用特征的恶意样本分类方法.首先将文件的二进制序列分割成RGB三色通道的值,从而将恶意样本转换为彩色图;然后用这些图片基于VGG卷积神经网络生成恶意样本分类模型;最后在模型训练阶段利用随机失活算法解决过拟合和梯度消失问题以及降低神经网络计算开销.该方法使用Malimg数据集25个族的9342个样本进行评估,平均分类准确率达96.16%,能有效地分类恶意代码样本.实验结果表明,与灰度图相比,所提方法将二进制文件转换为彩色图能更明显地强调图像特征,尤其是对于二进制序列中含有重复短数据片段的文件,而且利用特征更明显的训练集,神经网络能生成分类效果更好的分类模型.所提方法预处理操作简单,分类结果响应较快,因此适用于大规模恶意样本的快速分类等即时性要求较高的场景.
推荐文章
基于结构化指纹的恶意代码变种分析
恶意代码
变种分析
结构化指纹
静态分析
基于对象语义的恶意代码检测方法
恶意代码检测
系统对象
抗混淆
语义
状态变迁图
栈式自编码的恶意代码分类算法研究
栈式自编码
恶意代码
分类
基于敏感点覆盖的恶意代码检测方法
恶意代码检测
敏感行为函数
系统函数调用图
敏感路径
符号执行
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于VGGNet的恶意代码变种分类
来源期刊 计算机应用 学科 工学
关键词 恶意代码分类 数据可视化 深度学习 随机失活 卷积神经网络
年,卷(期) 2020,(1) 所属期刊栏目 网络空间安全
研究方向 页码范围 162-167
页数 6页 分类号 TP309
字数 5872字 语种 中文
DOI 10.11772/j.issn.1001-9081.2019050953
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 蔡弘昊 武警工程大学信息工程学院 4 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (3)
共引文献  (3)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2000(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
恶意代码分类
数据可视化
深度学习
随机失活
卷积神经网络
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机应用
月刊
1001-9081
51-1307/TP
大16开
成都237信箱
62-110
1981
chi
出版文献量(篇)
20189
总下载数(次)
40
论文1v1指导