基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高工业自动化水平,对表面缺陷进行有效检测,提出了一种改进的YOLOv3(You Only Look Once)网络检测方法.使用轻量级网络(MobileNet)来代替YOLOv3原有网络中的密集连接网络(Darknet-53),适当减少参数量的提取;加入空洞卷积,提高网络对小目标缺陷的检测能力;在网络结构的最后一层卷积中加入了Inception结构,进一步减少参数总量并加深网络.改进后的网络在测试集上精准性比原有的YOLOv3网络提高了23.3%,实时性也提高了95.4%,在钢板表面缺陷检测中具有更好的应用前景.
推荐文章
基于改进 YOLOv3 的葡萄叶部病虫害检测方法
葡萄病害检测
深度学习
轻量化
注意力机制
基于YOLOv3的车辆多目标检测
车辆
多目标检测
Darknet-53网络
YOLOv3
一种基于改进YOLOv3的密集人群检测算法
密集人群
YOLOv3
特征提取网络
K-means++
基于Gaussian-yolov3的铝型材表面缺陷检测
铝型材
缺陷检测
Gaussian-yolov3
可变形卷积
密集连接
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 改进的YOLOv3网络在钢板表面缺陷检测研究
来源期刊 计算机工程与应用 学科 工学
关键词 YOLOv3 缺陷检测 轻量级 空洞卷积 Inception
年,卷(期) 2020,(16) 所属期刊栏目 工程与应用
研究方向 页码范围 265-272
页数 8页 分类号 TP391.41
字数 5282字 语种 中文
DOI 10.3778/j.issn.1002-8331.2003-0232
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 范洪辉 江苏理工学院计算机工程学院 25 72 4.0 7.0
2 朱洪锦 江苏理工学院计算机工程学院 13 23 3.0 4.0
3 徐镪 江苏理工学院机械工程学院 2 1 1.0 1.0
4 周红燕 江苏理工学院机械工程学院 1 0 0.0 0.0
5 余光辉 江苏理工学院机械工程学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (3)
参考文献  (3)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2015(2)
  • 参考文献(0)
  • 二级参考文献(2)
2016(3)
  • 参考文献(0)
  • 二级参考文献(3)
2017(2)
  • 参考文献(0)
  • 二级参考文献(2)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
YOLOv3
缺陷检测
轻量级
空洞卷积
Inception
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导