作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
提出了一种基于用户偏好的协同过滤推荐算法.首先根据不同用户兴趣序列的最长公共子序列的长度和公共子序列的个数计算用户相似度,然后将该相似度和传统协同过滤推荐算法得到的相似度进行加权混合计算,基于混合相似度进行项目推荐和预测目标用户对项目的可能评分.最后,通过比较三种推荐算法在三个数据集Ciao、Flixster和MovieLens 100K的平均绝对误差MAE值,证明了本文提出的基于用户偏好的协同过滤推荐算法XQCF对于提高推荐系统精度的有效性.
推荐文章
基于用户引力的协同过滤推荐算法
推荐算法
协同过滤推荐
万有引力定律
社会标签
基于用户历史行为的协同过滤推荐算法
数据挖掘
协同过滤
用户偏好
项目相似度
个性化推荐
一种基于Sigmoid函数的改进协同过滤推荐算法
推荐系统
协同过滤
稀疏性问题
Sigmoid函数
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种基于用户偏好的协同过滤推荐算法
来源期刊 电脑与电信 学科
关键词 协同过滤 推荐算法 用户偏好
年,卷(期) 2020,(12) 所属期刊栏目 基金项目
研究方向 页码范围 17-21
页数 5页 分类号 TP391.3
字数 语种 中文
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (37)
共引文献  (0)
参考文献  (9)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(3)
  • 参考文献(0)
  • 二级参考文献(3)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(6)
  • 参考文献(0)
  • 二级参考文献(6)
2017(10)
  • 参考文献(0)
  • 二级参考文献(10)
2018(13)
  • 参考文献(1)
  • 二级参考文献(12)
2019(9)
  • 参考文献(5)
  • 二级参考文献(4)
2020(3)
  • 参考文献(3)
  • 二级参考文献(0)
2020(3)
  • 参考文献(3)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
协同过滤
推荐算法
用户偏好
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑与电信
月刊
1008-6609
44-1606/TN
大16开
广州市连新路171号国际科技中心B108室
1995
chi
出版文献量(篇)
8962
总下载数(次)
13
总被引数(次)
9565
论文1v1指导