作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
滚动轴承失效是煤矿机械常见的故障之一,一旦出现此类故障较难及时发现并修复,造成极大的经济损失.为此提出了一种可在滚动轴承故障发生早期进行及时预测诊断的方法,可以根据滚动轴承故障早期振动信号的各种特征分量进行模式匹配,从而识别出故障类型以便及时采取措施.在进行故障预测和模式识别时,采用了原始BP神经网络和经过遗传算法优化的GA-BP神经网络,经过仿真比较显示,后者的性能更强.
推荐文章
基于概率神经网络的滚动轴承故障诊断
PNN网络
BP神经网络
故障诊断
滚动轴承
基于卷积神经网络的滚动轴承故障诊断方法
深度学习
卷积神经网络
特征自动提取
轴承故障诊断
基于改进的RBF神经网络的滚动轴承故障诊断
RBF神经网络
减聚类算法
故障诊断
滚动轴承
基于小波包和改进BP神经网络的滚动轴承故障诊断方法
小波包
BP神经网络
Levenberg?Marquardt
滚动轴承
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于神经网络的煤矿机械滚动轴承故障诊断研究
来源期刊 煤矿机械 学科 工学
关键词 神经网络 滚动轴承 故障诊断 模式匹配
年,卷(期) 2020,(4) 所属期刊栏目 计算机应用
研究方向 页码范围 168-170
页数 3页 分类号 TH133.33
字数 语种 中文
DOI 10.13436/j.mkjx.202004057
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 黄志昌 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (74)
共引文献  (14)
参考文献  (6)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(4)
  • 参考文献(0)
  • 二级参考文献(4)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(4)
  • 参考文献(0)
  • 二级参考文献(4)
2014(4)
  • 参考文献(0)
  • 二级参考文献(4)
2015(6)
  • 参考文献(0)
  • 二级参考文献(6)
2016(12)
  • 参考文献(0)
  • 二级参考文献(12)
2017(12)
  • 参考文献(0)
  • 二级参考文献(12)
2018(6)
  • 参考文献(0)
  • 二级参考文献(6)
2019(10)
  • 参考文献(6)
  • 二级参考文献(4)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
神经网络
滚动轴承
故障诊断
模式匹配
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
煤矿机械
月刊
1003-0794
23-1280/TD
大16开
哈尔滨市古香街30号
14-38
1980
chi
出版文献量(篇)
21080
总下载数(次)
49
论文1v1指导