基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统文本情感分析,通常从文本(可以是文档、段落或句子)整体出发,只能给出一整句话的情感值,无法准确表达用户对不同目标(情感附着物)的情感倾向.因此,本文以深度学习算法为基础进行细粒度情感分析研究.通过分析注意力编码网络的结构和算法原理,提出相应的情感分析框架,以及文本预处理和文本表示方法.该模型在公开数据集SemEval 2014上进行了实验,结果显示基于注意力编码网络的情感分析模型可以获得更高的准确率.
推荐文章
基于深度学习的社交网络平台细粒度情感分析
情感分析
深度学习
降噪自动编码器
社交网络平台
基于卷积神经网络和注意力模型的文本情感分析
社交网络
文本情感分析
卷积神经网络
注意力模型
基于循环神经网络和注意力模型的文本情感分析
文本情感分析
深度学习
长短期记忆模型
注意力模型
基于语义扩展与注意力网络的问题细粒度分类
细粒度分类
依存句法
语义扩展
长短期记忆网络
注意力网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于注意力编码网络的细粒度文本情感分析研究
来源期刊 网络安全技术与应用 学科
关键词 情感分类 注意力机制 深度学习,细粒度
年,卷(期) 2020,(1) 所属期刊栏目 安全模型、算法与编程
研究方向 页码范围 50-52
页数 3页 分类号
字数 2457字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 肖化 华南师范大学物理与电信工程学院 115 924 14.0 27.0
2 颜孝为 华南师范大学物理与电信工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (425)
参考文献  (4)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1975(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(3)
  • 参考文献(1)
  • 二级参考文献(2)
2017(2)
  • 参考文献(1)
  • 二级参考文献(1)
2018(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
情感分类
注意力机制
深度学习,细粒度
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
网络安全技术与应用
月刊
1009-6833
11-4522/TP
大16开
北京市
2-741
2001
chi
出版文献量(篇)
13340
总下载数(次)
61
总被引数(次)
33730
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导