基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了获得可靠的训练样本及提高遥感影像变化检测的精度,提出基于深度学习的遥感影像变化检测方法.采用结构相似性方法(SSIM)选取纹理特征(灰度共生矩阵法),通过融合变化向量分析(CVA)方法获取不同时相遥感影像差异图(DI)及纹理特征差异图获得差异影像,并采用构造的变分去噪模型对差异影像进行去噪.利用频域显著性方法获取去噪差异影像的显著性图,通过模糊c-均值(FCM)算法对粗变化检测图(对显著性图选取阈值获得的)进行预分类(变化类、未变化类及未确定类).将从遥感影像上提取的变化像素和未变化像素的邻域特征引入深度神经网络模型进行训练,并利用训练好的深度神经网络模型对差异影像进行变化检测,得到最终的变化检测图.对3组遥感影像数据集进行变化检测实验,结果表明本研究方法的变化检测精度高于其他比较方法.
推荐文章
遥感影像变化检测方法研究
遥感影像
监督分类
非监督分类
变化检测
基于遥感影像的变化检测技术
变化检测
图像配准
遥感影像
Harris算子
采用独立阈值的遥感影像变化检测方法
变化检测
小比例变化量区域
像斑
样本选择
期望最大化算法
基于Xception模型的遥感影像场景变化检测
场景分类
变化检测
简单线性迭代聚类
迁移学习
Xception
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度学习的遥感影像变化检测方法
来源期刊 浙江大学学报(工学版) 学科 工学
关键词 频域显著性方法 变化向量分析 灰度共生矩阵 深度神经网络 差异影像
年,卷(期) 2020,(11) 所属期刊栏目 计算机与控制工程
研究方向 页码范围 2138-2148
页数 11页 分类号 TP75
字数 语种 中文
DOI 10.3785/j.issn.1008-973X.2020.11.009
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (93)
共引文献  (72)
参考文献  (15)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(6)
  • 参考文献(1)
  • 二级参考文献(5)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(6)
  • 参考文献(1)
  • 二级参考文献(5)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(7)
  • 参考文献(1)
  • 二级参考文献(6)
2010(7)
  • 参考文献(1)
  • 二级参考文献(6)
2011(6)
  • 参考文献(0)
  • 二级参考文献(6)
2012(6)
  • 参考文献(2)
  • 二级参考文献(4)
2013(9)
  • 参考文献(1)
  • 二级参考文献(8)
2014(12)
  • 参考文献(1)
  • 二级参考文献(11)
2015(8)
  • 参考文献(1)
  • 二级参考文献(7)
2016(12)
  • 参考文献(3)
  • 二级参考文献(9)
2017(3)
  • 参考文献(1)
  • 二级参考文献(2)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
频域显著性方法
变化向量分析
灰度共生矩阵
深度神经网络
差异影像
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
浙江大学学报(工学版)
月刊
1008-973X
33-1245/T
大16开
杭州市浙大路38号
32-40
1956
chi
出版文献量(篇)
6865
总下载数(次)
6
总被引数(次)
81907
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导