基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了解决传统特征提取方法依赖人工经验,无法挖掘数据深层次的特征而降低锚杆锚固缺陷识别准确率的问题,本文提出一种基于自动选层堆叠自编码器特征提取的锚杆锚固缺陷识别算法.该算法首先利用Adam优化算法对重构误差进行优化,自动确定堆叠编码器网络深度及参数,从而有效提高提取特征对缺陷的敏感度;然后利用Softmax多分类器对提取的特征信号进行锚杆锚固缺陷识别;最后通过数值模拟和物理模拟两种方法对所提算法进行了验证.结果表明:基于自动选层堆叠编码器的特征提取方法,能有效提取锚杆锚固缺陷特征,使得数值模拟和物理模拟缺陷平均识别率均达到97% 以上.
推荐文章
基于去噪卷积自编码器的色织 衬衫裁片缺陷检测
色织衬衫裁片
缺陷检测
卷积自编码器
图像重构
基于栈式稀疏自编码器的有源欺骗干扰识别
欺骗干扰
干扰识别
时频分析
深度学习
栈式稀疏自编码器
堆叠自编码网络性能优化及其在滚动轴承故障诊断中的应用
故障诊断
堆叠自编码网络
标准化
滚动轴承
一种基于降噪自编码器的人脸表情识别方法
表情识别
降噪自编码器
深度学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 堆叠自编码器在锚杆锚固缺陷类型识别中的应用
来源期刊 中国矿业 学科 工学
关键词 缺陷识别 自动选层网络 堆叠自编码器 特征提取 锚杆锚固
年,卷(期) 2020,(7) 所属期刊栏目 智能矿山
研究方向 页码范围 81-85
页数 5页 分类号 TD35|TP181
字数 2831字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 孙晓云 石家庄铁道大学电气与电子工程学院 46 111 6.0 8.0
2 王明明 石家庄铁道大学电气与电子工程学院 21 44 3.0 6.0
3 邢卉 石家庄铁道大学电气与电子工程学院 4 5 1.0 2.0
4 王莎 石家庄铁道大学电气与电子工程学院 2 0 0.0 0.0
5 路霖 石家庄铁道大学电气与电子工程学院 1 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (84)
共引文献  (49)
参考文献  (10)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(9)
  • 参考文献(0)
  • 二级参考文献(9)
2003(6)
  • 参考文献(0)
  • 二级参考文献(6)
2004(7)
  • 参考文献(0)
  • 二级参考文献(7)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(7)
  • 参考文献(1)
  • 二级参考文献(6)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(9)
  • 参考文献(1)
  • 二级参考文献(8)
2009(7)
  • 参考文献(1)
  • 二级参考文献(6)
2010(4)
  • 参考文献(1)
  • 二级参考文献(3)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(3)
  • 参考文献(0)
  • 二级参考文献(3)
2014(5)
  • 参考文献(0)
  • 二级参考文献(5)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(4)
  • 参考文献(2)
  • 二级参考文献(2)
2017(1)
  • 参考文献(0)
  • 二级参考文献(1)
2018(2)
  • 参考文献(1)
  • 二级参考文献(1)
2019(1)
  • 参考文献(1)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
缺陷识别
自动选层网络
堆叠自编码器
特征提取
锚杆锚固
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
中国矿业
月刊
1004-4051
11-3033/TD
大16开
北京市西直门北大街45号时代之光名苑2号楼901
2-566
1992
chi
出版文献量(篇)
9279
总下载数(次)
11
总被引数(次)
58822
论文1v1指导