基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Mango is a commercial crop on Hainan Island, China, that is cultivated to develop the tropical rural economy. The development of accurate and up-to-date maps of the spatial distribution of mango plantations is necessary for agricultural monitoring and decision management by the local government. Pixel-based and object-oriented image analysis methods for mapping mango plantations were compared using two machine learning algorithms (support vector machine (SVM) and Random Forest (RF)) based on Chinese high-resolution Gaofen-1 (GF-1) imagery in parts of Hainan Island. To assess the importance of different features on classification accuracy, a combined layer of four original bands, 32 gray-level co-occurrence (GLCM) texture indices, and 10 vegetation indices were used as input features. Then five different sets of variables (5, 10, 20, and 30 input variables and all 46 variables) were classified with the two machine learning algorithms at object-based level. Results of the feature optimization suggested that homogeneity and variance were very important variables for distinguishing mango plantations patches. The object-based classifiers could significantly improve overall accuracy between 2–7% when compared to pixel-based classifiers. When there were 5 and 10 input variables, SVM showed higher classification accuracy than RF, and when the input variables exceeded 20, RF showed better performances. After the accuracy achieved saturation points, there were only slightly classification accuracy improvements along with the numbers of feature increases for both of SVM and RF classifiers. The results indicated that GF-1 imagery can be successfully applied to mango plantation mapping in tropical regions, which would provide a useful framework for accurate tropical agriculture land management.
推荐文章
期刊_丙丁烷TDLAS测量系统的吸收峰自动检测
带间级联激光器
调谐半导体激光吸收光谱
雾剂检漏 中红外吸收峰 洛伦兹光谱线型
期刊_联合空间信息的改进低秩稀疏矩阵分解的高光谱异常目标检测
高光谱图像
异常目标检测 低秩稀疏矩阵分解 稀疏矩阵 残差矩阵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Comparison of machine learning algorithms for mapping mango plantations based on Gaofen-1 imagery
来源期刊 农业科学学报(英文) 学科
关键词
年,卷(期) 2020,(11) 所属期刊栏目
研究方向 页码范围 2815-2828
页数 14页 分类号
字数 语种 英文
DOI 10.1016/S2095-3119(20)63208-7
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (108)
共引文献  (26)
参考文献  (36)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1971(1)
  • 参考文献(1)
  • 二级参考文献(0)
1973(1)
  • 参考文献(1)
  • 二级参考文献(0)
1974(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(4)
  • 参考文献(0)
  • 二级参考文献(4)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(5)
  • 参考文献(2)
  • 二级参考文献(3)
2005(5)
  • 参考文献(0)
  • 二级参考文献(5)
2006(8)
  • 参考文献(1)
  • 二级参考文献(7)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(9)
  • 参考文献(1)
  • 二级参考文献(8)
2009(11)
  • 参考文献(4)
  • 二级参考文献(7)
2010(11)
  • 参考文献(0)
  • 二级参考文献(11)
2011(13)
  • 参考文献(4)
  • 二级参考文献(9)
2012(5)
  • 参考文献(1)
  • 二级参考文献(4)
2013(10)
  • 参考文献(2)
  • 二级参考文献(8)
2014(16)
  • 参考文献(4)
  • 二级参考文献(12)
2015(22)
  • 参考文献(3)
  • 二级参考文献(19)
2016(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(6)
  • 参考文献(6)
  • 二级参考文献(0)
2018(2)
  • 参考文献(2)
  • 二级参考文献(0)
2020(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
引文网络交叉学科
相关学者/机构
期刊影响力
农业科学学报(英文)
月刊
2095-3119
10-1039/S
北京中关村南大街12号
eng
出版文献量(篇)
4703
总下载数(次)
0
总被引数(次)
19930
论文1v1指导